Abstract

The process of fabricating photonic crystals comprised of alternately stacked high- and low-index dielectric materials on periodic substrates to form zigzag films is called the autocloning technique. In this study, we have fabricated TiO2/SiO2 two-dimensional polarization filters by using electron beam gun evaporation with ion-beam-assisted deposition. The shape of the zigzag structure is preserved, and the total thickness is 8μm. The symmetric structural design can be utilized as an antireflection coating applied to reduce ripples and achieve a 200nm working wavelength range.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
    [CrossRef] [PubMed]
  3. J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
    [CrossRef]
  4. X.-Y. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
    [CrossRef]
  5. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
    [CrossRef]
  6. J. She, E. Forsberg, X.-Y. Ao, and S.-L. He, “High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal,” J. Opt. A: Pure Appl. Opt. 8, 345–349 (2006).
    [CrossRef]
  7. S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
    [CrossRef]
  8. S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
    [CrossRef]
  9. T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
    [CrossRef]
  10. Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C.-C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
    [CrossRef]
  11. T.-H. Chang, S.-H. Chen, Cheng-Chung Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
    [CrossRef]
  12. R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
    [CrossRef]
  13. G. X. Fan and Q. H. Liu, “An FDTD algorithm with perfectly matched layers for general dispersive media,” IEEE Trans. Antennas Propagat. 48, 637–646 (2000).
    [CrossRef]

2009 (1)

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C.-C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

2008 (1)

T.-H. Chang, S.-H. Chen, Cheng-Chung Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

2006 (2)

X.-Y. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

J. She, E. Forsberg, X.-Y. Ao, and S.-L. He, “High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal,” J. Opt. A: Pure Appl. Opt. 8, 345–349 (2006).
[CrossRef]

2002 (1)

J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
[CrossRef]

2000 (2)

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

G. X. Fan and Q. H. Liu, “An FDTD algorithm with perfectly matched layers for general dispersive media,” IEEE Trans. Antennas Propagat. 48, 637–646 (2000).
[CrossRef]

1999 (3)

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
[CrossRef]

1990 (1)

R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

Ao, X.-Y.

X.-Y. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

J. She, E. Forsberg, X.-Y. Ao, and S.-L. He, “High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal,” J. Opt. A: Pure Appl. Opt. 8, 345–349 (2006).
[CrossRef]

Chang, T.-H.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C.-C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

T.-H. Chang, S.-H. Chen, Cheng-Chung Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Chen, H.-L.

T.-H. Chang, S.-H. Chen, Cheng-Chung Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Chen, S.-H.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C.-C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

T.-H. Chang, S.-H. Chen, Cheng-Chung Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Diener, J.

J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
[CrossRef]

Fan, G. X.

G. X. Fan and Q. H. Liu, “An FDTD algorithm with perfectly matched layers for general dispersive media,” IEEE Trans. Antennas Propagat. 48, 637–646 (2000).
[CrossRef]

Forsberg, E.

J. She, E. Forsberg, X.-Y. Ao, and S.-L. He, “High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal,” J. Opt. A: Pure Appl. Opt. 8, 345–349 (2006).
[CrossRef]

Gross, E.

J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
[CrossRef]

Hanaizumi, O.

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

He, S.

X.-Y. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

He, S.-L.

J. She, E. Forsberg, X.-Y. Ao, and S.-L. He, “High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal,” J. Opt. A: Pure Appl. Opt. 8, 345–349 (2006).
[CrossRef]

Hundberger, F. P.

R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

Kawakami, S.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
[CrossRef]

Kawashima, T.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
[CrossRef]

Koch, F.

J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
[CrossRef]

Kovalev, D.

J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
[CrossRef]

Kunz, K. S.

R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[CrossRef]

Künzner, N.

J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
[CrossRef]

Lee, C.-C.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C.-C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

Lee, Cheng-Chung

T.-H. Chang, S.-H. Chen, Cheng-Chung Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Liu, L.

X.-Y. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Liu, Q. H.

G. X. Fan and Q. H. Liu, “An FDTD algorithm with perfectly matched layers for general dispersive media,” IEEE Trans. Antennas Propagat. 48, 637–646 (2000).
[CrossRef]

Luebbers, R.

R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[CrossRef]

Miura, K.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Ohtera, Y.

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
[CrossRef]

Sato, T.

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
[CrossRef]

Schneider, M.

R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[CrossRef]

She, J.

J. She, E. Forsberg, X.-Y. Ao, and S.-L. He, “High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal,” J. Opt. A: Pure Appl. Opt. 8, 345–349 (2006).
[CrossRef]

Standler, R. B.

R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[CrossRef]

Takei, Y.

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Tamamura, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
[CrossRef]

Wosinski, L.

X.-Y. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

Yasuda, N.

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Yeh, Y.-W.

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C.-C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

Appl. Phys. Lett. (3)

X.-Y. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett. 77, 2613–2615 (2000).
[CrossRef]

Electron. Commun. Jpn. Pt. II (1)

S. Kawakami, O. Hanaizumi, T. Sato, Y. Ohtera, T. Kawashima, N. Yasuda, Y. Takei, and K. Miura, “Fabrication of 3D photonic crystals by autocloning and its applications,” Electron. Commun. Jpn. Pt. II 82, 43–52 (1999).
[CrossRef]

Electron. Lett. (1)

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarisation splitters,” Electron. Lett. 15, 1271–1272 (1999).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

G. X. Fan and Q. H. Liu, “An FDTD algorithm with perfectly matched layers for general dispersive media,” IEEE Trans. Antennas Propagat. 48, 637–646 (2000).
[CrossRef]

IEEE Trans. Electromag. Compat. (1)

R. Luebbers, F. P. Hundberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222–227 (1990).
[CrossRef]

J. Appl. Phys. (1)

J. Diener, N. Künzner, D. Kovalev, E. Gross, and F. Koch, “Dichroic behavior of multilayer structures based on anisotropically nanostructured silicon,” J. Appl. Phys. 91, 6704–6709(2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

J. She, E. Forsberg, X.-Y. Ao, and S.-L. He, “High-efficiency polarization beam splitters based on a two-dimensional polymer photonic crystal,” J. Opt. A: Pure Appl. Opt. 8, 345–349 (2006).
[CrossRef]

Opt. Rev. (1)

Y.-W. Yeh, T.-H. Chang, S.-H. Chen, and C.-C. Lee, “Etching effect of the autocloning structure using ion-assisted deposition,” Opt. Rev. 16, 222–225 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062(1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489(1987).
[CrossRef] [PubMed]

Thin Solid Films (1)

T.-H. Chang, S.-H. Chen, Cheng-Chung Lee, and H.-L. Chen, “Fabrication of autocloned photonic crystals using electron-beam guns with ion-assisted deposition,” Thin Solid Films 516, 1051–1055 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simulated transmittance spectra of the 2D polarization filter: H , TiO 2 ( 250 nm ) and L , SiO 2 ( 375 nm ).

Fig. 2
Fig. 2

Simulated transmittance spectra with a symmetric structure and AR coating for (a)  sub / ( 0.5 L H 0.5 L ) 14 / air and (b)  sub / ( 0.5 H L 0.5 H ) 14 / air .

Fig. 3
Fig. 3

Schematic diagram of the electron beam gun evaporation system.

Fig. 4
Fig. 4

Experimental results for sub / ( 0.5 L H 0.5 L ) 14 / air : (a) measured transmittance spectrum and (b) scanning electron micrograph (SEM) results.

Fig. 5
Fig. 5

Experimental results for sub / ( 0.5 H L 0.5 H ) 11 / air : (a) measured transmittance spectrum and (b) SEM results.

Fig. 6
Fig. 6

Experimental extinction ratio of sub / ( 0.5 L H 0.5 L ) 14 / air .

Tables (1)

Tables Icon

Table 1 Fabrication Parameters for the Polarization Filter

Metrics