Abstract

Scatter analysis is an effective method for the characterization of thin film components. The new highly sensitive table top system ALBATROSS-TT (3D-Arrangement for Laser Based Transmittance, Reflectance and Optical Scatter Measurement—Table Top) has been developed at the Fraunhofer Institute in Jena to meet the specific requirements for close-to-process applications. Extremely high sensitivity with a noise equivalent angle resolved scatter level of 2×108   sr1, full three-dimensional spherical measurement capability, and an instrument size as small as 0.8m×0.8m×0.8m have been achieved. Details of specifications, optical components, and software are presented, including a comparison to our laboratory system. Anisotropy analysis of diamond-turned aluminum substrates as well as substrate and coating characterization are demonstrated as examples of application.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Stover, Optical Scattering—Measurement and Analysis, 2nd ed. (SPIE, 1995).
    [CrossRef]
  2. J. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, 1999).
  3. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
    [CrossRef] [PubMed]
  4. J. Elson and J. Bennett, “Relation between the angular dependence of scattering and the statistical properties of optical surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).
    [CrossRef]
  5. S. Schröder, A. Duparré, and A. Tünnermann, “Roughness evolution and scatter losses of multilayers for 193 nm optics,” Appl. Opt. 47, C88–C97 (2008).
    [CrossRef] [PubMed]
  6. S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing structural and alteration effects in thin film coatings,” Appl. Opt. 50, C164–C171 (2011).
    [CrossRef] [PubMed]
  7. D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).
  8. S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010).
    [CrossRef] [PubMed]
  9. S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005).
    [CrossRef] [PubMed]
  10. M. Zerrad, M. Lequime, C. Deumie, and C. Amra, “A goniometric instrument for a spatially resolved scattering and polarimetric characterization of optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD7.
  11. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993).
    [CrossRef] [PubMed]
  12. P. Kadkhoda, H. Madebach, and D. Ristau, “Angle resolved scatter measurements on optical components,” Proc. SPIE 5965, 59651A (2005).
    [CrossRef]
  13. F. Leloup, S. Forment, P. Dutré, M. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47, 5454–5467(2008).
    [PubMed]
  14. R. White, P. Saunders, S. Bonsey, J. Ven, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Appl. Opt. 37, 3450–3454 (1998).
    [CrossRef]
  15. F. Cady, D. Bjork, J. Rifkin, and J. Stover, “BRDF error analysis,” Proc. SPIE. 1165, 154–164 (1989).
  16. “Spectralon diffuse reflectance standards” (Labsphere, Inc., 2010), http://www.labsphere.com.
  17. C. Asmail, J. Hsia, A. Parr, and J. Hoeft, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements,” Appl. Opt. 33, 6084–6091 (1994).
    [CrossRef] [PubMed]
  18. C. Asmail, A. Parr, and J. Hsia, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements: corrigendum,” Appl. Opt. 38, 6027–6028 (1999).
    [CrossRef]
  19. K. Klicker, J. Stover, D. Cheever, and F. Cady, “Practical reduction of instrument signature in near specular light scatter measurements,” Proc. SPIE 818, 26–33 (1987).
  20. T. Schiff, J. Stover, D. Cheever, and D. Bjork, “Maximum and minimum limitations imposed on BSDF measurements,” Proc. SPIE 967, 50–57 (1988).
  21. M. Trost, S. Schröder, T. Feigl, and A. Duparré, “Influence of substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153(2011).
    [CrossRef] [PubMed]
  22. J. Elson, J. Rahn, and J. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219(1983).
    [CrossRef] [PubMed]
  23. J. Elson and J. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208(1995).
    [CrossRef] [PubMed]
  24. Fabrication by P. Munzert, Fraunhofer Institute Jena
  25. O. Kienzle, J. Staub, and T. Tschudi, “Light scattering from transparent substrates: theory and experiment,” Phys. Rev. B 50, 1848–1860 (1994).
    [CrossRef]
  26. Fabrication by M. Rohde, Fraunhofer Institute Jena

2011 (2)

2010 (1)

2008 (2)

2005 (2)

2002 (1)

1999 (1)

1998 (1)

1995 (1)

1994 (2)

O. Kienzle, J. Staub, and T. Tschudi, “Light scattering from transparent substrates: theory and experiment,” Phys. Rev. B 50, 1848–1860 (1994).
[CrossRef]

C. Asmail, J. Hsia, A. Parr, and J. Hoeft, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements,” Appl. Opt. 33, 6084–6091 (1994).
[CrossRef] [PubMed]

1993 (1)

1989 (1)

F. Cady, D. Bjork, J. Rifkin, and J. Stover, “BRDF error analysis,” Proc. SPIE. 1165, 154–164 (1989).

1988 (1)

T. Schiff, J. Stover, D. Cheever, and D. Bjork, “Maximum and minimum limitations imposed on BSDF measurements,” Proc. SPIE 967, 50–57 (1988).

1987 (2)

D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).

K. Klicker, J. Stover, D. Cheever, and F. Cady, “Practical reduction of instrument signature in near specular light scatter measurements,” Proc. SPIE 818, 26–33 (1987).

1983 (1)

1979 (1)

Amra, C.

C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993).
[CrossRef] [PubMed]

M. Zerrad, M. Lequime, C. Deumie, and C. Amra, “A goniometric instrument for a spatially resolved scattering and polarimetric characterization of optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD7.

Asmail, C.

Bennett, J.

Bjork, D.

F. Cady, D. Bjork, J. Rifkin, and J. Stover, “BRDF error analysis,” Proc. SPIE. 1165, 154–164 (1989).

T. Schiff, J. Stover, D. Cheever, and D. Bjork, “Maximum and minimum limitations imposed on BSDF measurements,” Proc. SPIE 967, 50–57 (1988).

Blaschke, H.

Bonsey, S.

Cady, F.

F. Cady, D. Bjork, J. Rifkin, and J. Stover, “BRDF error analysis,” Proc. SPIE. 1165, 154–164 (1989).

K. Klicker, J. Stover, D. Cheever, and F. Cady, “Practical reduction of instrument signature in near specular light scatter measurements,” Proc. SPIE 818, 26–33 (1987).

D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).

Cheever, D.

T. Schiff, J. Stover, D. Cheever, and D. Bjork, “Maximum and minimum limitations imposed on BSDF measurements,” Proc. SPIE 967, 50–57 (1988).

K. Klicker, J. Stover, D. Cheever, and F. Cady, “Practical reduction of instrument signature in near specular light scatter measurements,” Proc. SPIE 818, 26–33 (1987).

D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).

Deumie, C.

M. Zerrad, M. Lequime, C. Deumie, and C. Amra, “A goniometric instrument for a spatially resolved scattering and polarimetric characterization of optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD7.

Duparré, A.

Dutré, P.

Edgar, H.

Elson, J.

Feigl, T.

Ferre-Borrull, J.

Forment, S.

Gliech, S.

Hanselaer, P.

Herffurth, T.

Hoeft, J.

Hsia, J.

Kadkhoda, P.

P. Kadkhoda, H. Madebach, and D. Ristau, “Angle resolved scatter measurements on optical components,” Proc. SPIE 5965, 59651A (2005).
[CrossRef]

Kienzle, O.

O. Kienzle, J. Staub, and T. Tschudi, “Light scattering from transparent substrates: theory and experiment,” Phys. Rev. B 50, 1848–1860 (1994).
[CrossRef]

Klicker, K.

K. Klicker, J. Stover, D. Cheever, and F. Cady, “Practical reduction of instrument signature in near specular light scatter measurements,” Proc. SPIE 818, 26–33 (1987).

Klicker, K. A.

D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).

Leloup, F.

Lequime, M.

M. Zerrad, M. Lequime, C. Deumie, and C. Amra, “A goniometric instrument for a spatially resolved scattering and polarimetric characterization of optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD7.

Madebach, H.

P. Kadkhoda, H. Madebach, and D. Ristau, “Angle resolved scatter measurements on optical components,” Proc. SPIE 5965, 59651A (2005).
[CrossRef]

Mattson, L.

J. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, 1999).

Munzert, P.

Fabrication by P. Munzert, Fraunhofer Institute Jena

Notni, G.

Parr, A.

Pointer, M.

Rahn, J.

Rifkin, J.

F. Cady, D. Bjork, J. Rifkin, and J. Stover, “BRDF error analysis,” Proc. SPIE. 1165, 154–164 (1989).

Ristau, D.

P. Kadkhoda, H. Madebach, and D. Ristau, “Angle resolved scatter measurements on optical components,” Proc. SPIE 5965, 59651A (2005).
[CrossRef]

Roche, P.

Rohde, M.

Fabrication by M. Rohde, Fraunhofer Institute Jena

Saunders, P.

Schiff, T.

T. Schiff, J. Stover, D. Cheever, and D. Bjork, “Maximum and minimum limitations imposed on BSDF measurements,” Proc. SPIE 967, 50–57 (1988).

Schröder, S.

Staub, J.

O. Kienzle, J. Staub, and T. Tschudi, “Light scattering from transparent substrates: theory and experiment,” Phys. Rev. B 50, 1848–1860 (1994).
[CrossRef]

Steinert, J.

Stover, J.

F. Cady, D. Bjork, J. Rifkin, and J. Stover, “BRDF error analysis,” Proc. SPIE. 1165, 154–164 (1989).

T. Schiff, J. Stover, D. Cheever, and D. Bjork, “Maximum and minimum limitations imposed on BSDF measurements,” Proc. SPIE 967, 50–57 (1988).

K. Klicker, J. Stover, D. Cheever, and F. Cady, “Practical reduction of instrument signature in near specular light scatter measurements,” Proc. SPIE 818, 26–33 (1987).

J. Stover, Optical Scattering—Measurement and Analysis, 2nd ed. (SPIE, 1995).
[CrossRef]

Stover, J. C.

D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).

Torricini, D.

Trost, M.

Tschudi, T.

O. Kienzle, J. Staub, and T. Tschudi, “Light scattering from transparent substrates: theory and experiment,” Phys. Rev. B 50, 1848–1860 (1994).
[CrossRef]

Tünnermann, A.

Ven, J.

White, R.

Zerrad, M.

M. Zerrad, M. Lequime, C. Deumie, and C. Amra, “A goniometric instrument for a spatially resolved scattering and polarimetric characterization of optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD7.

Appl. Opt. (13)

J. Elson, J. Rahn, and J. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219(1983).
[CrossRef] [PubMed]

C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45–10.6 μm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt. 32, 5462–5474 (1993).
[CrossRef] [PubMed]

C. Asmail, J. Hsia, A. Parr, and J. Hoeft, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements,” Appl. Opt. 33, 6084–6091 (1994).
[CrossRef] [PubMed]

R. White, P. Saunders, S. Bonsey, J. Ven, and H. Edgar, “Reflectometer for measuring the bidirectional reflectance of rough surfaces,” Appl. Opt. 37, 3450–3454 (1998).
[CrossRef]

C. Asmail, A. Parr, and J. Hsia, “Rayleigh scattering limits for low-level bidirectional reflectance distribution function measurements: corrigendum,” Appl. Opt. 38, 6027–6028 (1999).
[CrossRef]

J. Elson and J. Bennett, “Calculation of the power spectral density from surface profile data,” Appl. Opt. 34, 201–208(1995).
[CrossRef] [PubMed]

A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. Bennett, “Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
[CrossRef] [PubMed]

S. Schröder, S. Gliech, and A. Duparré, “Measurement system to determine the total and angle-resolved light scattering of optical components in the deep-ultraviolet and vacuum-ultraviolet spectral regions,” Appl. Opt. 44, 6093–6107 (2005).
[CrossRef] [PubMed]

S. Schröder, A. Duparré, and A. Tünnermann, “Roughness evolution and scatter losses of multilayers for 193 nm optics,” Appl. Opt. 47, C88–C97 (2008).
[CrossRef] [PubMed]

F. Leloup, S. Forment, P. Dutré, M. Pointer, and P. Hanselaer, “Design of an instrument for measuring the spectral bidirectional scatter distribution function,” Appl. Opt. 47, 5454–5467(2008).
[PubMed]

S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010).
[CrossRef] [PubMed]

M. Trost, S. Schröder, T. Feigl, and A. Duparré, “Influence of substrate finish and thin film roughness on the optical performance of Mo/Si multilayers,” Appl. Opt. 50, C148–C153(2011).
[CrossRef] [PubMed]

S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle-resolved scattering: an effective method for characterizing structural and alteration effects in thin film coatings,” Appl. Opt. 50, C164–C171 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Phys. Rev. B (1)

O. Kienzle, J. Staub, and T. Tschudi, “Light scattering from transparent substrates: theory and experiment,” Phys. Rev. B 50, 1848–1860 (1994).
[CrossRef]

Proc. SPIE (4)

D. Cheever, F. Cady, K. A. Klicker, and J. C. Stover, “Design review of a unique complete angle-scatter instrument (CASI),” Proc. SPIE 818, 13–20 (1987).

P. Kadkhoda, H. Madebach, and D. Ristau, “Angle resolved scatter measurements on optical components,” Proc. SPIE 5965, 59651A (2005).
[CrossRef]

K. Klicker, J. Stover, D. Cheever, and F. Cady, “Practical reduction of instrument signature in near specular light scatter measurements,” Proc. SPIE 818, 26–33 (1987).

T. Schiff, J. Stover, D. Cheever, and D. Bjork, “Maximum and minimum limitations imposed on BSDF measurements,” Proc. SPIE 967, 50–57 (1988).

Proc. SPIE. (1)

F. Cady, D. Bjork, J. Rifkin, and J. Stover, “BRDF error analysis,” Proc. SPIE. 1165, 154–164 (1989).

Other (6)

“Spectralon diffuse reflectance standards” (Labsphere, Inc., 2010), http://www.labsphere.com.

Fabrication by P. Munzert, Fraunhofer Institute Jena

M. Zerrad, M. Lequime, C. Deumie, and C. Amra, “A goniometric instrument for a spatially resolved scattering and polarimetric characterization of optical coatings,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThD7.

J. Stover, Optical Scattering—Measurement and Analysis, 2nd ed. (SPIE, 1995).
[CrossRef]

J. Bennett and L. Mattson, Introduction to Surface Roughness and Scattering, 2nd ed. (Optical Society of America, 1999).

Fabrication by M. Rohde, Fraunhofer Institute Jena

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Measurement system ALBATROSS-TT with further details of the 3D positioning system: 1, housing; 2, illumination system; 3, detection system; 4, sample; 5, polar positioner; and 6, azimuth positioner.

Fig. 2
Fig. 2

Schematic diagram of the illumination system: 1, laser; 2, chopper; 3, attenuator; 4, λ / 4 plate; 5, insertable polarizer; 6–8, spatial filter; 9, sample; and 10, detector aperture.

Fig. 3
Fig. 3

Schematic diagram of the detection system: 1, sample; 2, solid angle aperture; 3, insertable polarizer; 4, field lens; 5, field stop; and 6, PMT.

Fig. 4
Fig. 4

(a) Flow chart of the automated software for measurement control and data analysis. (b) Main control window of the software showing a real-time plot during an ARS measurement.

Fig. 5
Fig. 5

Comparison of instrument signature of the table top system ALBATROSS-TT with the laboratory system ALBATROSS.

Fig. 6
Fig. 6

ARS measurements of three different samples, each performed with ALBATROSS and ALBATROSS-TT.

Fig. 7
Fig. 7

ARS of a highly reflective dielectric multilayer coating and its substrate [24].

Fig. 8
Fig. 8

(a), (b) 3D-ARS measurements of an unpolished and (c) polished diamond-turned Al substrate with a nickel top coat [26]. (a) and (b) were performed at different positions on the unpolished sample.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ARS ( θ s ) = P s ( θ s ) P i · Δ Ω s ,
ARS ( θ s ) = k c k a · V s ( θ s ) .
( Δ ARS ( θ s ) ARS ( θ s ) ) 2 = ( Δ k c k c ) 2 + ( Δ k a k a ) 2 + ( Δ V s ( θ s ) V s ( θ s ) ) 2 .
S b = 2 π θ s , min θ s , max ARS ( θ s ) sin ( θ s ) d θ s .
σ = λ 4 π S b R ( if     τ c λ and σ λ ) ,
f = | sin θ s sin θ i | λ .

Metrics