## Abstract

Two design problems were posed: a high-temperature solar-selective coating, and a near to mid-infrared Fabry–Perot etalon. A total of 50 submissions were received, 42 for problem A and eight for problem B. The submissions were created through a wide spectrum of design approaches and optimization strategies. Michael Trubetskov and Fabien Lemarchand won the first contest by submitting the design with the highest overall merit function, and the fewest layer/thinnest solar-selective design, respectively. Michael Trubetskov also won the second contest by submitting the thinnest Fabry–Perot etalon design, with a free spectral range standard deviation of 0. Vladimir Pervak and Bill Southwell received second-place finishes. The submitted designs are described and evaluated.

© 2011 Optical Society of America

Full Article |

PDF Article
### Equations (7)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\text{Solar absorptance=}\frac{\sum _{{\sigma}_{i}}\frac{\text{Abs}({\sigma}_{i})\mathrm{ASTM}173({\sigma}_{i})}{{\sigma}_{i}^{2}}}{\sum _{{\sigma}_{i}}\frac{\mathrm{ASTM}173({\sigma}_{i})}{{\sigma}_{i}^{2}}},\phantom{\rule[-0.0ex]{2.0em}{0.0ex}}\phantom{\rule{0ex}{0ex}}{\sigma}_{i}=(2480,2520,2560,\dots ,35720\text{}{\mathrm{cm}}^{-1},$$
(2)
$$450\text{}\xb0\mathrm{C}\text{blackbody emittance}=\frac{\sum _{{\sigma}_{i}}\frac{\text{Abs}({\sigma}_{i})\mathrm{BB}450\text{}\mathrm{C}({\sigma}_{i})}{{\sigma}_{i}^{2}}}{\sum _{{\sigma}_{i}}\frac{\mathrm{BB}450\text{}\mathrm{C}({\sigma}_{i})}{{\sigma}_{i}^{2}}},\phantom{\rule[-0.0ex]{2.0em}{0.0ex}}\phantom{\rule{0ex}{0ex}}{\sigma}_{i}=(400,440,480,\dots ,35720\text{}{\mathrm{cm}}^{-1}),$$
(3)
$$\text{Merit function}=\text{Solar absorptance}-450\text{}\xb0\mathrm{C}\text{blackbody emittance.}$$
(4)
$$\mathrm{CWN}=\frac{({\mathrm{HPP}}_{\text{upper}}+{\mathrm{HPP}}_{\text{lower}})}{2},$$
(5)
$$\mathrm{FWHM}={\mathrm{HPP}}_{\text{upper}}-{\mathrm{HPP}}_{\text{lower}}\mathrm{.}$$
(6)
$${\mathrm{FSR}}_{n}={\mathrm{CWN}}_{n+1}-{\mathrm{CWN}}_{n}(n=1\text{to}11,\text{for orders})\mathrm{.}$$
(7)
$$T=\frac{{T}_{a}{T}_{b}}{[1-({R}_{a}^{-}{R}_{b}^{+}{)}^{1/2}{]}^{2}}[1+\frac{4({R}_{a}^{-}{R}_{b}^{+}{)}^{1/2}}{[1-({R}_{a}^{-}{R}_{b}^{+}{)}^{1/2}{]}^{2}}\phantom{\rule{0ex}{0ex}}{\mathrm{sin}}^{2}(\frac{{\varphi}_{a}+{\varphi}_{b}}{2}-\delta ){]}^{-1}\phantom{\rule[-0.0ex]{2.0em}{0.0ex}}\phantom{\rule{0ex}{0ex}}\delta =2\pi {n}_{s}{d}_{s}\mathrm{cos}{\theta}_{s}/\lambda ,$$