Abstract

Normal incidence transmittance and reflectance spectra of sputtered nanocomposite monolayer films of Ag in SiO2, buried and unburied, showed significant redshifted plasmon resonances from 410 to 455nm, which could be well interpreted with a simple model that starts from the Maxwell Garnett theory and the Kreibig extension of the Drude–Lorentz equation, but with a further extension related to the dipolar interaction between the metal particles distributed on a surface.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. Ding, X. Wang, D. J. Chen, and Q. Q. Wang, “Optical percolation and nonlinearity of sputtered Ag island films,” Opt. Express 14, 1541–1546 (2006).
    [CrossRef] [PubMed]
  4. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4, 244–251 (2009).
    [CrossRef]
  5. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
    [CrossRef] [PubMed]
  6. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticles arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
    [CrossRef]
  7. G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114(2006).
    [CrossRef]
  8. J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 26, 4204–4229 (1982).
    [CrossRef]
  9. A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
    [CrossRef]
  10. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
    [CrossRef]
  11. A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
    [CrossRef]
  12. L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
    [CrossRef]
  13. H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).
    [CrossRef]
  14. W. E. Vargas, D. E. Azofeifa, and N. Clark, “Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method,” Thin Solid Films 425, 1–8 (2003).
    [CrossRef]

2010 (1)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticles arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

2009 (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4, 244–251 (2009).
[CrossRef]

2008 (2)

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

2006 (2)

S. Ding, X. Wang, D. J. Chen, and Q. Q. Wang, “Optical percolation and nonlinearity of sputtered Ag island films,” Opt. Express 14, 1541–1546 (2006).
[CrossRef] [PubMed]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114(2006).
[CrossRef]

2005 (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
[CrossRef]

2004 (1)

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[CrossRef]

2003 (1)

W. E. Vargas, D. E. Azofeifa, and N. Clark, “Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method,” Thin Solid Films 425, 1–8 (2003).
[CrossRef]

1999 (1)

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

1982 (1)

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 26, 4204–4229 (1982).
[CrossRef]

Angelomé, P. C.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4, 244–251 (2009).
[CrossRef]

Ausloos, M.

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 26, 4204–4229 (1982).
[CrossRef]

Azofeifa, D. E.

W. E. Vargas, D. E. Azofeifa, and N. Clark, “Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method,” Thin Solid Films 425, 1–8 (2003).
[CrossRef]

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
[CrossRef]

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticles arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

Brito-Silva, A. M.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticles arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

Chen, D. J.

Chen, Y.

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114(2006).
[CrossRef]

Clark, N.

W. E. Vargas, D. E. Azofeifa, and N. Clark, “Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method,” Thin Solid Films 425, 1–8 (2003).
[CrossRef]

de Araújo, C. B.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
[CrossRef]

Ding, S.

Galembeck, A.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

Gérardy, J. M.

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 26, 4204–4229 (1982).
[CrossRef]

Gómez, L. A.

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
[CrossRef]

Hilger, A.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[CrossRef]

Jin, P.

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114(2006).
[CrossRef]

Kreibig, U.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Lebedev, A. N.

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

Lechuga, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4, 244–251 (2009).
[CrossRef]

Liz-Marzan, L. M.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4, 244–251 (2009).
[CrossRef]

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticles arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

Pinchuk, A.

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[CrossRef]

Polman, A.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticles arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16, 21793–21800 (2008).
[CrossRef] [PubMed]

Sepúlveda, B.

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4, 244–251 (2009).
[CrossRef]

Stenzel, O.

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

Tazawa, M.

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114(2006).
[CrossRef]

Vargas, W. E.

W. E. Vargas, D. E. Azofeifa, and N. Clark, “Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method,” Thin Solid Films 425, 1–8 (2003).
[CrossRef]

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Wang, Q. Q.

Wang, X.

Xu, G.

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114(2006).
[CrossRef]

Appl. Phys. B (1)

L. A. Gómez, C. B. de Araújo, A. M. Brito-Silva, and A. Galembeck, “Solvent effects on the linear and nonlinear optical response of silver nanoparticles,” Appl. Phys. B 92, 61–66 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticles arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010).
[CrossRef]

G. Xu, Y. Chen, M. Tazawa, and P. Jin, “Influence of dielectric properties of a substrate upon plasmon resonance spectrum supported Ag nanoparticles,” Appl. Phys. Lett. 88, 043114(2006).
[CrossRef]

Eur. Phys. J. D (1)

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

Nano Today (1)

B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today 4, 244–251 (2009).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (2)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B 71, 085416(2005).
[CrossRef]

J. M. Gérardy and M. Ausloos, “Absorption spectrum of clusters of spheres from general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 26, 4204–4229 (1982).
[CrossRef]

Surf. Sci. (1)

A. Pinchuk, U. Kreibig, and A. Hilger, “Optical properties of metallic nanoparticles: influence of interface effects and interband transitions,” Surf. Sci. 557, 269–280 (2004).
[CrossRef]

Thin Solid Films (1)

W. E. Vargas, D. E. Azofeifa, and N. Clark, “Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method,” Thin Solid Films 425, 1–8 (2003).
[CrossRef]

Other (3)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. A. Macleod, Thin Film Optical Filters (Macmillan, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross-sectional scheme and (b) top-view micrograph of a sample with buried Ag particles in silica matrix; t eff and t total stand for effective medium and total thicknesses, respectively. A scale bar of 50 nm is shown in (b).

Fig. 2
Fig. 2

Cross-sectional (a) scheme and (b) micrograph of a sample with unburied Ag particles in silica matrix; t eff and t total stand for effective medium and total thicknesses, respectively. A scale bar of 20 nm is shown in (b).

Fig. 3
Fig. 3

Experimental and theoretical data for samples with (a) buried and (b) unburied Ag particles. At the insets, the recovered real and imaginary parts of the refractive index are shown in the measured spectral range, with a vertical scale from 0 to 2.0.

Fig. 4
Fig. 4

Scheme for description of the coupling between particles when the exciting electric field is parallel to the plane of particles.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε eff ε d ( ω ) ε eff + 2 ε d ( ω ) = f ε i ( ω ) ε d ( ω ) ε i ( ω ) + 2 ε d ( ω ) ,
Γ = Γ + A v F R ,
ε DL ( ω ) = ε + ω P 2 ( ω 0 2 ω 2 ) + i Γ ω ,
F = j [ T exp ( λ j T calc ) ( A , λ j ) ] 2 ,
ε diel = n diel 2 = [ 1 / 2 ( n SiO 2 + n air ) ] 2 .
Im { A } = ( R ω v F ) 2 K C m ,

Metrics