Abstract

Laser-damage thresholds and morphologies of hafnia single layers exposed under femtosecond, picosecond, and nanosecond single pulses (1030/1064nm) are reported. The samples were made with different deposition parameters in order to study how the damage behavior of the samples evolves with the pulse duration and how it is linked to the deposition process. In the femtosecond to picosecond regime, the scaling law of the laser-induced damage threshold as a function of pulse duration is in good agreement with the models of photo and avalanche ionization based on the rate equation for free electron generation. However, differences in the damage morphologies between samples are shown. No correlation between the nanosecond and femtosecond/picosecond laser-damage resistance of hafnia coatings could be established. We also report evidence of the transition in damage mechanisms for hafnia, from an ablation process linked to intrinsic properties of the material to a defect-induced process, that exists between a few picoseconds and a few tens of picoseconds.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
    [CrossRef]
  2. P. André, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications,” J. Vac. Sci. Technol. 18, 2372–2377(2000).
    [CrossRef]
  3. M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
    [CrossRef]
  4. D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
    [CrossRef]
  5. C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
    [CrossRef]
  6. J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
    [CrossRef]
  7. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
    [CrossRef]
  8. C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
    [CrossRef]
  9. L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107–C113 (2008).
    [CrossRef]
  10. N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
    [CrossRef]
  11. M. Dunne, “A high-power laser fusion facility for Europe,” Nature Phys. 2, 2–5 (2006).
    [CrossRef]
  12. E. Gerstner, “Extreme light,” Nature 446, 16–18 (2007).
    [CrossRef]
  13. H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
    [CrossRef]
  14. D. L. Wood, K. Nassau, T. Y. Kometai, and D. L. Nash, “Optical properties of cubic hafnia stabilized with yttrium,” Appl. Opt. 29, 604–607 (1990).
    [CrossRef]
  15. A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
    [CrossRef]
  16. R. Thielsch, A. Gatto, and N. Kaiser, “Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region,” Appl. Opt. 41, 3211–3217(2002).
    [CrossRef]
  17. R. Picard, D. Milam, and R. Bradbury, “Statistical analysis of defect-caused damage in thin films,” Appl. Opt. 16, 1563–1571(1977).
    [CrossRef]
  18. S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
    [CrossRef]
  19. “Determination of laser-damage threshold of optical surfaces. Part 1: 1-on-1 test,” ISO Standard 112541 (International Organization for Standardization, 2000).
  20. J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47, 5272–5280 (2008).
    [CrossRef]
  21. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175–190 (1997).
    [CrossRef]
  22. C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
    [CrossRef]
  23. Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
    [CrossRef]
  24. M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
    [CrossRef]
  25. L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003).
    [CrossRef]
  26. A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
    [CrossRef]
  27. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
    [CrossRef]
  28. L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
    [CrossRef]
  29. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B 13, 459–468 (1996).
    [CrossRef]
  30. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
    [CrossRef]
  31. L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
    [CrossRef]
  32. D. Ristau and J. Ebert, “Development of a thermographic laser calorimeter,” Appl. Opt. 25, 4571–4578 (1986).
    [CrossRef]
  33. J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
    [CrossRef]
  34. S. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. B 52, 253–257 (1995).
    [CrossRef]
  35. E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981).
    [CrossRef]
  36. B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
    [CrossRef]
  37. L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
    [CrossRef]

2009 (3)

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[CrossRef]

A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
[CrossRef]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef]

2008 (6)

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47, 5272–5280 (2008).
[CrossRef]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107–C113 (2008).
[CrossRef]

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

2007 (3)

E. Gerstner, “Extreme light,” Nature 446, 16–18 (2007).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
[CrossRef]

2006 (3)

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[CrossRef]

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

M. Dunne, “A high-power laser fusion facility for Europe,” Nature Phys. 2, 2–5 (2006).
[CrossRef]

2005 (4)

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

2003 (2)

L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
[CrossRef]

2002 (1)

2000 (2)

P. André, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications,” J. Vac. Sci. Technol. 18, 2372–2377(2000).
[CrossRef]

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

1999 (1)

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

1997 (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175–190 (1997).
[CrossRef]

1996 (1)

1995 (1)

S. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. B 52, 253–257 (1995).
[CrossRef]

1993 (1)

1990 (1)

1989 (1)

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

1986 (1)

1981 (1)

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981).
[CrossRef]

1977 (1)

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

Allen, T.

S. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. B 52, 253–257 (1995).
[CrossRef]

Alvisi, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Amsden, C.

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

André, P.

P. André, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications,” J. Vac. Sci. Technol. 18, 2372–2377(2000).
[CrossRef]

Balachninaite, O.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

Balciunas, T.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

Behar, G.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Berthier, T.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Bignon, E.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Blanchot, N.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Blaschke, H.

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

Boubault, F.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Bradbury, R.

Cahill, D.

S. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. B 52, 253–257 (1995).
[CrossRef]

Capoulade, J.

Cathelinaud, M.

Chappuis, C.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Chmel, A. E.

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175–190 (1997).
[CrossRef]

Chow, R.

Ciapponi, A.

A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
[CrossRef]

Clapp, B.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

Coic, H.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Commandré, M.

L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107–C113 (2008).
[CrossRef]

J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47, 5272–5280 (2008).
[CrossRef]

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Damiens-Dupont, C.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Di Giulio, M.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Diakomihalis, D.

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Dunne, M.

M. Dunne, “A high-power laser fusion facility for Europe,” Nature Phys. 2, 2–5 (2006).
[CrossRef]

Ebert, J.

Ebrardt, J.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Falabella, S.

Fan, R.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Fan, S.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Fan, Z.

L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
[CrossRef]

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
[CrossRef]

Feit, M. D.

Gallais, L.

A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
[CrossRef]

J. Capoulade, L. Gallais, J.-Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47, 5272–5280 (2008).
[CrossRef]

L. Gallais, J. Capoulade, J.-Y. Natoli, M. Commandré, M. Cathelinaud, C. Koc, and M. Lequime, “Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering,” Appl. Opt. 47, C107–C113 (2008).
[CrossRef]

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

L. Gallais and J.-Y. Natoli, “Optimized metrology for laser-damage measurement: application to multiparameter study,” Appl. Opt. 42, 960–971 (2003).
[CrossRef]

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Gao, W.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Gatto, A.

Gautheron, Y.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Gerstner, E.

E. Gerstner, “Extreme light,” Nature 446, 16–18 (2007).
[CrossRef]

Gibert, P.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Gilman, S.

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Grézes-Besset, C.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Griffin, A. J.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

Grigonis, R.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

Hartmann, O.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

He, H.

Herman, S.

Hertwig, A.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
[CrossRef]

Hue, J.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

Hugonnot, E.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Jacobs, S.

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Jasapara, J. C.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

Jennings, R. T.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

Jensen, L.

Jeskevic, M.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Jolly, M.

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Jupé, M.

Kaiser, N.

Kautek, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
[CrossRef]

Koc, C.

Kometai, T. Y.

Kozlowski, M. R.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Krol, H.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Kruger, J.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
[CrossRef]

Laborde, F.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Lagier, G.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Lambropoulos, J.

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Lambropoulos, J. C.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

Lebeaux, D.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Lee, S.

S. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. B 52, 253–257 (1995).
[CrossRef]

Lenzner, M.

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
[CrossRef]

Lequime, M.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Loomis, G. E.

Luce, J.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Mangote, B.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Maricle, S. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

Marrone, S. G.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Martin, S.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
[CrossRef]

Melninkaitis, A.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef]

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Mero, M.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Miksys, D.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

Milam, D.

Mirauskas, J.

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Montant, S.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Nash, D. L.

Nassau, K.

Natoli, J. Y.

A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
[CrossRef]

Natoli, J.-Y.

Neauport, J.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Noailles, S.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Oliver, J. B.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

Palmier, S.

A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
[CrossRef]

Papernov, S.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

Perrone, M. R.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Perry, M. D.

Picard, R.

Poupinet, L.

P. André, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications,” J. Vac. Sci. Technol. 18, 2372–2377(2000).
[CrossRef]

Protopapa, M. L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Raffestin, D.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Rainer, F.

Rakickas, T.

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

Ravel, G.

P. André, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications,” J. Vac. Sci. Technol. 18, 2372–2377(2000).
[CrossRef]

Remy, B.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Rethfeld, B.

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[CrossRef]

Ristau, D.

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[CrossRef]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef]

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

D. Ristau and J. Ebert, “Development of a thermographic laser calorimeter,” Appl. Opt. 25, 4571–4578 (1986).
[CrossRef]

Roques, A.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Rouyer, C.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Rubenchik, A. M.

Rudolph, W.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Sautarel, F.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Sauteret, C.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Sautet, M.

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Schmid, A. W.

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

Schwartz, S.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

Shang, G.

Shao, J.

L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
[CrossRef]

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Sheehan, L. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

Shore, B. W.

Sinicropi, M.

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

Sirutkaitis, V.

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17, 12269–12278 (2009).
[CrossRef]

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Smirl, A. L.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981).
[CrossRef]

Soileau, M. J.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981).
[CrossRef]

Starke, K.

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Stolz, C. J.

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[CrossRef]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

R. Chow, S. Falabella, G. E. Loomis, F. Rainer, C. J. Stolz, and M. R. Kozlowski, “Reactive evaporation of low defect density hafnia,” Appl. Opt. 32, 5567–5574 (1993).
[CrossRef]

Stuart, B. C.

Thielsch, R.

Thomas, M. D.

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

Torricini, D.

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Turowski, M.

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[CrossRef]

Valentini, A.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Van Stryland, E. W.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981).
[CrossRef]

Vasanelli, L.

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Wagner, F. R.

A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
[CrossRef]

Wang, C.

Wang, T.

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
[CrossRef]

Wang, Y.

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

William, W. E.

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981).
[CrossRef]

Wood, D. L.

Yuan, L.

Zhang, D.

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
[CrossRef]

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Zhao, Y.

L. Yuan, Y. Zhao, G. Shang, C. Wang, H. He, J. Shao, and Z. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2-SiO2 high reflector,” J. Opt. Soc. Am. B 24, 538–543 (2007).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
[CrossRef]

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. A (1)

S. Martin, A. Hertwig, M. Lenzner, J. Kruger, and W. Kautek, “Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses,” Appl. Phys. A 77, 883–884(2003).
[CrossRef]

Appl. Surf. Sci. (2)

D. Zhang, S. Fan, Y. Zhao, W. Gao, J. Shao, R. Fan, Y. Wang, and Z. Fan, “High laser-induced damage threshold HfO2 films prepared by ion-assisted electron beam evaporation,” Appl. Surf. Sci. 243, 232–237 (2005).
[CrossRef]

Y. Zhao, T. Wang, D. Zhang, J. Shao, and Z. Fan, “Laser conditioning and multi-shot laser damage accumulation effects of HfO2-SiO2 antireflective coatings,” Appl. Surf. Sci. 245, 335–339 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

J. Appl. Phys. (2)

J. Lambropoulos, M. Jolly, C. Amsden, S. Gilman, M. Sinicropi, D. Diakomihalis, and S. Jacobs, “Thermal conductivity of dielectric thin films,” J. Appl. Phys. 66, 4230–4242 (1989).
[CrossRef]

L. Gallais, J. Capoulade, J.-Y. Natoli, and M. Commandré, “Investigation of nanodefect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104, 053120 (2008).
[CrossRef]

J. Lumin. (1)

A. Ciapponi, F. R. Wagner, S. Palmier, J. Y. Natoli, and L. Gallais, “Study of luminescent defects in hafnia thin films made with different deposition techniques,” J. Lumin. 129, 1786–1789 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. (1)

P. André, L. Poupinet, and G. Ravel, “Evaporation and ion assisted deposition of HfO2 coatings: some key points for high power applications,” J. Vac. Sci. Technol. 18, 2372–2377(2000).
[CrossRef]

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49, 175–190 (1997).
[CrossRef]

Nature (1)

E. Gerstner, “Extreme light,” Nature 446, 16–18 (2007).
[CrossRef]

Nature Phys. (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nature Phys. 2, 2–5 (2006).
[CrossRef]

Opt. Eng. (2)

M. Mero, B. Clapp, J. C. Jasapara, W. Rudolph, D. Ristau, K. Starke, J. Kruger, S. Martin, and W. Kautek, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44, 051107 (2005).
[CrossRef]

H. Krol, L. Gallais, M. Commandré, C. Grézes-Besset, D. Torricini, and G. Lagier, “Influence of polishing and cleaning on the laser-induced damage threshold of substrates and coatings at 1064nm,” Opt. Eng. 46, 023402 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (4)

S. Lee, D. Cahill, and T. Allen, “Thermal conductivity of sputtered oxide films,” Phys. Rev. B 52, 253–257 (1995).
[CrossRef]

E. W. Van Stryland, M. J. Soileau, A. L. Smirl, and W. E. William, “Pulse width and focal volume dependence of laser-induced breakdown,” Phys. Rev. B 23, 2144–2149 (1981).
[CrossRef]

B. Rethfeld, “Free-electron generation in laser-irradiated dielectrics,” Phys. Rev. B 73, 035101 (2006).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Plasma Phys. Control. Fusion (1)

N. Blanchot, G. Behar, T. Berthier, E. Bignon, F. Boubault, C. Chappuis, H. Coic, C. Damiens-Dupont, J. Ebrardt, Y. Gautheron, P. Gibert, O. Hartmann, E. Hugonnot, F. Laborde, D. Lebeaux, J. Luce, S. Montant, S. Noailles, J. Neauport, D. Raffestin, B. Remy, A. Roques, F. Sautarel, M. Sautet, C. Sauteret, and C. Rouyer, “Overview of PETAL, the multi-petawatt project on the LIL facility,” Plasma Phys. Control. Fusion 50, 124045 (2008).
[CrossRef]

Proc. SPIE (5)

C. J. Stolz, D. Ristau, M. Turowski, and H. Blaschke, “Thin film femtosecond laser damage competition,” Proc. SPIE 7504, 75040S (2009).
[CrossRef]

C. J. Stolz, M. D. Thomas, and A. J. Griffin, “BDS thin film damage competition,” Proc. SPIE 7132, 71320C (2008).
[CrossRef]

J. B. Oliver, S. Papernov, A. W. Schmid, and J. C. Lambropoulos, “Optimization of laser-damage resistance of evaporated hafnia films at 351nm,” Proc. SPIE 7132, 71320J (2008).
[CrossRef]

A. Melninkaitis, D. Miksys, T. Balciunas, O. Balachninaite, T. Rakickas, R. Grigonis, and V. Sirutkaitis, “Automated test station for laser-induced damage threshold measurements according to ISO 11254-2 standard,” Proc. SPIE 6101, 61011J(2006).
[CrossRef]

C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, and J. Hue, “Laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1999).
[CrossRef]

Thin Solid Films (1)

M. Alvisi, M. Di Giulio, S. G. Marrone, M. R. Perrone, M. L. Protopapa, A. Valentini, and L. Vasanelli, “HfO2 films with high laser damage threshold,” Thin Solid Films 358, 250–258(2000).
[CrossRef]

Other (2)

“Determination of laser-damage threshold of optical surfaces. Part 1: 1-on-1 test,” ISO Standard 112541 (International Organization for Standardization, 2000).

L. Gallais, B. Mangote, M. Commandré, A. Melninkaitis, J. Mirauskas, M. Jeskevic, and V. Sirutkaitis, “Transient interference implications on the subpicosecond laser damage of multidielectrics,” Appl. Phys. Lett. 97, 051112 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

LIDT as defined in this study: mean value between the highest fluence of zero damage probability and the upper fluence. The dotted lines represent the possible maximum and minimum LIDT, linked to the error bars on the measurements.

Fig. 2
Fig. 2

Experimental setup for laser-damage measurements at 12 ns , 1064 nm . Sh, mechanical shutter; W, half-wave plate; P, glan laser polarizer; BS, wedged beam splitter; ND, set of multidieletric neutral density filters; L, focusing lens; Py, pyroelectric detector; Ca, calorimeter; S, sample; BD, beam dump; IS, imaging system; BP, beam profiler.

Fig. 3
Fig. 3

Image of the beam intensity distribution at the sample location (left) and temporal profile (right) (single-shot measurement with a 25 GHz bandpass detector).

Fig. 4
Fig. 4

Experimental setup for laser-damage measurements at 24 ps , 1064 nm . W, half-wave plate; P, thin film polarizer; HR, high reflective mirror; BS, wedged beam splitter; ND, set of neutral density filters; PD1, calibrated photodiode for energy measurements; Sh, mechanical shutter; L, focusing lens; Ca, calorimeter; S, sample; PD2, photodiode for damage detection; BD, beam dump; BP, beam profiler.

Fig. 5
Fig. 5

Image of the beam intensity distribution at the sample location (left) and autocorrelation trace (right).

Fig. 6
Fig. 6

Experimental setup for laser-damage measurements at 1 ps , 1030 nm . HR, high reflective mirror; Sh, mechanical shutter; BS, wedged beam splitter; W, half-wave plate; P, thin film polarizer; Py1, pyroelectric detector; Py2, pyroelectric detector for calibration; ND, set of multidieletric neutral density filters; L, focusing lens; M, microscope; S, sample; BP, beam profiler; SSA, single-shot autocorrelator.

Fig. 7
Fig. 7

Image of the beam intensity distribution at the sample location (left) and autocorrelation trace (right).

Fig. 8
Fig. 8

Experimental setup for laser-damage measurements at 300 and 700 fs , 1030 nm . W, half-wave plate; P, thin film polarizer; HR, high reflective mirror; BS, wedged beam splitter; ND, set of neutral density filters; PD1, calibrated photodiode for energy measurements; L, focusing lens; Ca, calorimeter; S, sample; PD2, photodiode for damage detection; Ca, calorimeter; BD, beam dump; BP, beam profiler.

Fig. 9
Fig. 9

Image of the beam intensity distribution at the sample location (left) and autocorrelation trace (right).

Fig. 10
Fig. 10

Experimental setup for laser-damage measurements at 45 fs , 1030 nm . W, half-wave plate; P, thin film polarizer; HR, high reflective mirror; BS, wedged beam splitter; ND, set of neutral density filters; PD, calibrated photodiode for energy measurements; Sh, mechanical shutter; OAPM, off-axis parabolic mirror; Ca, calorimeter; S, sample; BD, beam dump; BP, beam profiler.

Fig. 11
Fig. 11

Image of the beam intensity distribution at the sample location (left) and autocorrelation trace (right). This last measurement is acquired before frequency conversion.

Fig. 12
Fig. 12

SEM observation of damaged sites with increasing fluences (from left to right) on sample 1.

Fig. 13
Fig. 13

Comparison of SEM observation of damaged sites on the different samples.

Fig. 14
Fig. 14

Laser-damage threshold measured on the different samples and scaling models for the case of short and long pulses. (a) Results from 50 fs to 1.2 ps ; (b) results from 50 fs to 12 ns . For the short pulse model presented in the text, calculations were made with the following parameters: bandgap, 5.5 eV ; refractive index, 2; critical electronic density, 2 × 10 21 cm 3 ; Drude relaxation time, 10 15 s ; effective electron mass, 9.11 × 10 31 kg . For the case of long pulses, a t 0.5 LIDT dependence is plotted, based on the results obtained at 12 ns .

Fig. 15
Fig. 15

Calculation of the transient intensity and electronic density distribution in a half-wave HfO 2 film irradiated with a 1 ps / 1030 nm / 2.5 J / cm 2 pulse (theoretical damage threshold is 2 J / cm 2 ). The intensity as a function of time is represented on upper left-hand corner. The intensity and electronic density distribution are plotted on the three other parts of the figure at three different times during the pulse. These calculations take into account the changes in the refractive index induced by the electron density distribution using a Drude model of free electron gas.

Tables (3)

Tables Icon

Table 1 References of the Samples, Refractive Index, Thicknesses, and Results of X-Ray Diffraction Measurements (from Ref. [15]) a

Tables Icon

Table 2 Summary of LIDT Measurement Configurations

Tables Icon

Table 3 Results of the LIDT Measurements Expressed in J / cm 2 (also Reported in Fig. 15)

Metrics