Abstract

Scattering resulting from interface imperfections critically affects the image contrast and optical throughput of multilayer coatings for 13.5nm. To investigate the scattering mechanisms, at-wavelength scattering measurements in combination with atomic force microscopy are analyzed for an in-depth characterization of the roughness properties. The different impacts of substrate finish and intrinsic thin film roughness on the scattering distribution are separated and analyzed in detail. Furthermore, a novel approach to characterize the roughness of large extreme ultraviolet substrates is presented, based on light scattering measurements at 442nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
    [CrossRef]
  2. D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998).
    [CrossRef]
  3. A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
    [CrossRef]
  4. S. Yulin, “Multilayer coatings for EUV/soft x-ray mirrors,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds., Springer Series in Optical Sciences (Springer-Verlag, 2003), pp. 281–308.
  5. P. Bousquet, F. Flory, and P. Roche, “Scattering from multilayer thin films: theory and experiment,” J. Opt. Soc. Am. 71, 1115–1123 (1981).
    [CrossRef]
  6. C. Amra, “Light scattering from multilayer optics. I. Tools of investigation,” J. Opt. Soc. Am. A 11, 197–210 (1994).
    [CrossRef]
  7. S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “EUV reflectance and scattering of Mo/Si multilayers on differently polished substrates,” Opt. Express 15, 13997–14012(2007).
    [CrossRef]
  8. “Optics and optical instruments—Test methods for radiation scattered by optical components,” ISO 13696:2002 (International Organization for Standardization, 2002).
  9. M. Singh and J. J. M. Braat, “Design of multilayer extreme-ultraviolet mirrors for enhanced reflectivity,” Appl. Opt. 39, 2189–2197 (2000).
    [CrossRef]
  10. T. Feigl, S. Yulin, N. Benoit, and N. Kaiser, “EUV multilayer optics,” Microelectron. Eng. 83, 703–706 (2006).
    [CrossRef]
  11. A. Duparré, J. Ferré-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, “Surface characterization techniques for determining rms roughness and power spectral densities of optical components,” Appl. Opt. 41, 154–171 (2002).
    [CrossRef]
  12. J. Ferré-Borrull, A. Duparré, and E. Quesnel, “Roughness and light scattering of ion-beam-sputtered fluoride coatings for 193nm,” Appl. Opt. 39, 5854–5864 (2000).
    [CrossRef]
  13. S. Schröder, T. Herffurth, M. Trost, and A. Duparré, “Angle-resolved scattering and reflectance of extreme-ultraviolet multilayer coatings: measurement and analysis,” Appl. Opt. 49, 1503–1512 (2010).
    [CrossRef]
  14. E. M. Gullikson, “Scattering from normal-incidence EUV optics,” Proc. SPIE 3331, 72–80 (1998).
    [CrossRef]
  15. S. Schröder and A. Duparré, “Finish assessment of complex surfaces by advanced light scattering techniques,” Proc. SPIE 7102, 71020F (2008).
    [CrossRef]
  16. S. Schröder, T. Herffurth, H. Blaschke, and A. Duparré, “Angle resolved scattering: an effective method for characterizing thin film coatings,” Appl. Opt. 50, C164–C171 (2010).
    [CrossRef]
  17. E. L. Church, “Fractal surface finish,” Appl. Opt. 27, 1518–1526 (1988).
    [CrossRef]

2010

2008

S. Schröder and A. Duparré, “Finish assessment of complex surfaces by advanced light scattering techniques,” Proc. SPIE 7102, 71020F (2008).
[CrossRef]

2007

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

S. Schröder, T. Feigl, A. Duparré, and A. Tünnermann, “EUV reflectance and scattering of Mo/Si multilayers on differently polished substrates,” Opt. Express 15, 13997–14012(2007).
[CrossRef]

2006

T. Feigl, S. Yulin, N. Benoit, and N. Kaiser, “EUV multilayer optics,” Microelectron. Eng. 83, 703–706 (2006).
[CrossRef]

2002

2000

1999

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

1998

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998).
[CrossRef]

E. M. Gullikson, “Scattering from normal-incidence EUV optics,” Proc. SPIE 3331, 72–80 (1998).
[CrossRef]

1994

1988

1981

Amra, C.

Baker, S. L.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Bennett, J. M.

Benoit, N.

T. Feigl, S. Yulin, N. Benoit, and N. Kaiser, “EUV multilayer optics,” Microelectron. Eng. 83, 703–706 (2006).
[CrossRef]

Bijkerk, F.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

Bjorkholm, J. E.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Blaschke, H.

Bokor, J.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Bousquet, P.

Braat, J. J. M.

Church, E. L.

Duparré, A.

Feigl, T.

Ferré-Borrull, J.

Flory, F.

Gaines, D. P.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998).
[CrossRef]

Gliech, S.

Goldberg, K. A.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Goldsmith, J. E. M.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Gullikson, E. M.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

E. M. Gullikson, “Scattering from normal-incidence EUV optics,” Proc. SPIE 3331, 72–80 (1998).
[CrossRef]

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998).
[CrossRef]

Herffurth, T.

Kaiser, N.

T. Feigl, S. Yulin, N. Benoit, and N. Kaiser, “EUV multilayer optics,” Microelectron. Eng. 83, 703–706 (2006).
[CrossRef]

Louis, E.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

Montcalm, C.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Naulleau, P.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Nedelcu, I.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

Notni, G.

Quesnel, E.

Roche, P.

Schröder, S.

Singh, M.

Spiller, E.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Stearns, D. G.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998).
[CrossRef]

Steinert, J.

Sweeney, D. W.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998).
[CrossRef]

Taylor, J. S.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

Trost, M.

Tünnermann, A.

Underwood, J. H.

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

van de Kruijs, R. W. E.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

Yakshin, A. E.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

Yulin, S.

T. Feigl, S. Yulin, N. Benoit, and N. Kaiser, “EUV multilayer optics,” Microelectron. Eng. 83, 703–706 (2006).
[CrossRef]

S. Yulin, “Multilayer coatings for EUV/soft x-ray mirrors,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds., Springer Series in Optical Sciences (Springer-Verlag, 2003), pp. 281–308.

Zoethout, E.

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

D. G. Stearns, D. P. Gaines, D. W. Sweeney, and E. M. Gullikson, “Nonspecular x-ray scattering in a multilayer-coated imaging system,” J. Appl. Phys. 84, 1003–1028 (1998).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Microelectron. Eng.

T. Feigl, S. Yulin, N. Benoit, and N. Kaiser, “EUV multilayer optics,” Microelectron. Eng. 83, 703–706 (2006).
[CrossRef]

Opt. Express

Proc. SPIE

E. M. Gullikson, “Scattering from normal-incidence EUV optics,” Proc. SPIE 3331, 72–80 (1998).
[CrossRef]

S. Schröder and A. Duparré, “Finish assessment of complex surfaces by advanced light scattering techniques,” Proc. SPIE 7102, 71020F (2008).
[CrossRef]

E. M. Gullikson, S. L. Baker, J. E. Bjorkholm, J. Bokor, K. A. Goldberg, J. E. M. Goldsmith, C. Montcalm, P. Naulleau, E. Spiller, D. G. Stearns, J. S. Taylor, and J. H. Underwood, “EUV scattering and flare of 10× projection cameras,” Proc. SPIE 3676, 717–723 (1999).
[CrossRef]

A. E. Yakshin, R. W. E. van de Kruijs, I. Nedelcu, E. Zoethout, E. Louis, and F. Bijkerk, “Enhanced reflectance of interface engineered Mo/Si multilayers produced by thermal particle deposition,” Proc. SPIE 6517, 65170I (2007).
[CrossRef]

Other

S. Yulin, “Multilayer coatings for EUV/soft x-ray mirrors,” in Optical Interference Coatings, N.Kaiser and H.K.Pulker, eds., Springer Series in Optical Sciences (Springer-Verlag, 2003), pp. 281–308.

“Optics and optical instruments—Test methods for radiation scattered by optical components,” ISO 13696:2002 (International Organization for Standardization, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic geometry for the definitions of specular quantities and scattering. All angles are measured relative to the macroscopic surface normal n.

Fig. 2
Fig. 2

1 μm × 1 μm AFM images before and after coating. Upper row, sample A; lower row, sample B.

Fig. 3
Fig. 3

Roughness evolution of Mo/Si multilayer. Left, sample A; right, sample B.

Fig. 4
Fig. 4

Angle resolved scattering at 13.5 nm of Mo/Si multilayer, measurement and modeling results. Left, sample A; right, sample B.

Fig. 5
Fig. 5

Encircled energy around specular peak. Left, sample A; right, sample B.

Fig. 6
Fig. 6

Roughness characterization of EUV collector substrate. Left, adjustment for light scattering measurements. Right, PSDs from ARS measurements at 442 nm and extrapolation.

Fig. 7
Fig. 7

PSDs of diamond turned and polished substrate from AFM, WLI, and ARS measurements at 442 nm .

Fig. 8
Fig. 8

HSFR mapping of EUV collector substrate (diameter, 660 mm ) based on ARS measurements at 442 nm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ARS ( θ s ) = Δ P s ( θ s ) Δ Ω s · P i = 1 λ 4 i = 0 N j = 0 N C i C j * PSD i j ( f ) ,
S ( θ s , max ) = 2 π θ s , min θ s , max ARS ( θ s θ i ) sin ( θ s θ i ) d θ s .
PSD i ( f ) = PSD int , i ( f ) + a rep , i ( f ) PSD i 1 ( f ) .
PSD ( f ) = A f n .

Metrics