Abstract

Fluorine-doped tin oxide (FTO) films have been deposited by pulsed DC magnetron sputtering with an Sn target. Various ratios of CF4/O2 gas were injected to enhance the optical and electrical properties of the films. The extinction coefficient was lower than 1.5×103 in the range from 400 to 800nm when the CF4/O2 ratio was 0.375. The resistivity of fluorine-doped SnO2 films (1.63×103Ωcm) deposited at 300°C was 27.9 times smaller than that of undoped SnO2 (4.55×102Ωcm). Finally, an FTO film was consecutively deposited for protecting the oxidation of indium tin oxide films. The resistivity of the double-layered film was 2.68×104Ωcm, which increased by less than 39% at a 450°C annealing temperature for 1h in air.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–220 (2004).
    [CrossRef]
  2. S. R. Vishwakarma, J. P. Upadhyay, and H. C. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films 176, 99–110 (1989).
    [CrossRef]
  3. J. P. Upadhyay, S. R. Vishwakarma, and H. C. Prasad, “Studies of electrical and optical properties of SnO2:P films,” Thin Solid Films 169, 195–204 (1989).
    [CrossRef]
  4. B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
    [CrossRef]
  5. P. K. Manoj, B. Joseph, and V. K. Vaidyan, “Preparation and characterization of indium-doped tin oxide thin films,” Ceram. Int. 33, 273–278 (2007).
    [CrossRef]
  6. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Electrical properties of doped tin oxide films,” in Semiconducting Transparent Thin Films (Institute of Physics, 1995), pp. 158–170.
  7. A. Rakhshani, Y. Makdish, and H. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” J. Appl. Phys. 83, 1049–1057 (1998).
    [CrossRef]
  8. B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor,” Thin Solid Films 402, 71–78 (2002).
    [CrossRef]
  9. D. Das and R. Banerjee, “Properties of electron-beam-evaporated tin oxide films,” Thin Solid Films 147, 321–331 (1987).
    [CrossRef]
  10. O. K. Varghese and L. K. Malhotra, “Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy,” J. Appl. Phys. 87, 7457–7465 (2000).
    [CrossRef]
  11. Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
    [CrossRef]
  12. B. P. Howson, H. Barakova, and A. G. Spencer, “Reactive sputtering of electrically conducting tin oxide,” Thin Solid Films 196, 315–321 (1991).
    [CrossRef]

2007 (1)

P. K. Manoj, B. Joseph, and V. K. Vaidyan, “Preparation and characterization of indium-doped tin oxide thin films,” Ceram. Int. 33, 273–278 (2007).
[CrossRef]

2004 (1)

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–220 (2004).
[CrossRef]

2002 (1)

B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor,” Thin Solid Films 402, 71–78 (2002).
[CrossRef]

2000 (1)

O. K. Varghese and L. K. Malhotra, “Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy,” J. Appl. Phys. 87, 7457–7465 (2000).
[CrossRef]

1998 (2)

Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
[CrossRef]

A. Rakhshani, Y. Makdish, and H. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” J. Appl. Phys. 83, 1049–1057 (1998).
[CrossRef]

1994 (1)

B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

1991 (1)

B. P. Howson, H. Barakova, and A. G. Spencer, “Reactive sputtering of electrically conducting tin oxide,” Thin Solid Films 196, 315–321 (1991).
[CrossRef]

1989 (2)

S. R. Vishwakarma, J. P. Upadhyay, and H. C. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films 176, 99–110 (1989).
[CrossRef]

J. P. Upadhyay, S. R. Vishwakarma, and H. C. Prasad, “Studies of electrical and optical properties of SnO2:P films,” Thin Solid Films 169, 195–204 (1989).
[CrossRef]

1987 (1)

D. Das and R. Banerjee, “Properties of electron-beam-evaporated tin oxide films,” Thin Solid Films 147, 321–331 (1987).
[CrossRef]

Banerjee, R.

D. Das and R. Banerjee, “Properties of electron-beam-evaporated tin oxide films,” Thin Solid Films 147, 321–331 (1987).
[CrossRef]

Barakova, H.

B. P. Howson, H. Barakova, and A. G. Spencer, “Reactive sputtering of electrically conducting tin oxide,” Thin Solid Films 196, 315–321 (1991).
[CrossRef]

Das, D.

D. Das and R. Banerjee, “Properties of electron-beam-evaporated tin oxide films,” Thin Solid Films 147, 321–331 (1987).
[CrossRef]

Dawar, A. L.

H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Electrical properties of doped tin oxide films,” in Semiconducting Transparent Thin Films (Institute of Physics, 1995), pp. 158–170.

Granqvist, C. G.

B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Hartnagel, H. L.

H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Electrical properties of doped tin oxide films,” in Semiconducting Transparent Thin Films (Institute of Physics, 1995), pp. 158–170.

Howson, B. P.

B. P. Howson, H. Barakova, and A. G. Spencer, “Reactive sputtering of electrically conducting tin oxide,” Thin Solid Films 196, 315–321 (1991).
[CrossRef]

Ito, H.

Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
[CrossRef]

Jagadish, C.

H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Electrical properties of doped tin oxide films,” in Semiconducting Transparent Thin Films (Institute of Physics, 1995), pp. 158–170.

Jain, A. K.

H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Electrical properties of doped tin oxide films,” in Semiconducting Transparent Thin Films (Institute of Physics, 1995), pp. 158–170.

Joseph, B.

P. K. Manoj, B. Joseph, and V. K. Vaidyan, “Preparation and characterization of indium-doped tin oxide thin films,” Ceram. Int. 33, 273–278 (2007).
[CrossRef]

Kamimura, K.

Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
[CrossRef]

Kim, H.

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–220 (2004).
[CrossRef]

Makdish, Y.

A. Rakhshani, Y. Makdish, and H. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” J. Appl. Phys. 83, 1049–1057 (1998).
[CrossRef]

Malhotra, L. K.

O. K. Varghese and L. K. Malhotra, “Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy,” J. Appl. Phys. 87, 7457–7465 (2000).
[CrossRef]

Manoj, P. K.

P. K. Manoj, B. Joseph, and V. K. Vaidyan, “Preparation and characterization of indium-doped tin oxide thin films,” Ceram. Int. 33, 273–278 (2007).
[CrossRef]

Nakao, M.

Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
[CrossRef]

Olsson, E.

B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Onuma, Y.

Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
[CrossRef]

Piqué, A.

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–220 (2004).
[CrossRef]

Prasad, H. C.

S. R. Vishwakarma, J. P. Upadhyay, and H. C. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films 176, 99–110 (1989).
[CrossRef]

J. P. Upadhyay, S. R. Vishwakarma, and H. C. Prasad, “Studies of electrical and optical properties of SnO2:P films,” Thin Solid Films 169, 195–204 (1989).
[CrossRef]

Rakhshani, A.

A. Rakhshani, Y. Makdish, and H. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” J. Appl. Phys. 83, 1049–1057 (1998).
[CrossRef]

Ramazaniyan, H.

A. Rakhshani, Y. Makdish, and H. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” J. Appl. Phys. 83, 1049–1057 (1998).
[CrossRef]

Spencer, A. G.

B. P. Howson, H. Barakova, and A. G. Spencer, “Reactive sputtering of electrically conducting tin oxide,” Thin Solid Films 196, 315–321 (1991).
[CrossRef]

Stjerna, B.

B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Thangaraju, B.

B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor,” Thin Solid Films 402, 71–78 (2002).
[CrossRef]

Upadhyay, J. P.

S. R. Vishwakarma, J. P. Upadhyay, and H. C. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films 176, 99–110 (1989).
[CrossRef]

J. P. Upadhyay, S. R. Vishwakarma, and H. C. Prasad, “Studies of electrical and optical properties of SnO2:P films,” Thin Solid Films 169, 195–204 (1989).
[CrossRef]

Vaidyan, V. K.

P. K. Manoj, B. Joseph, and V. K. Vaidyan, “Preparation and characterization of indium-doped tin oxide thin films,” Ceram. Int. 33, 273–278 (2007).
[CrossRef]

Varghese, O. K.

O. K. Varghese and L. K. Malhotra, “Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy,” J. Appl. Phys. 87, 7457–7465 (2000).
[CrossRef]

Vishwakarma, S. R.

J. P. Upadhyay, S. R. Vishwakarma, and H. C. Prasad, “Studies of electrical and optical properties of SnO2:P films,” Thin Solid Films 169, 195–204 (1989).
[CrossRef]

S. R. Vishwakarma, J. P. Upadhyay, and H. C. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films 176, 99–110 (1989).
[CrossRef]

Wang, Z.

Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

H. Kim and A. Piqué, “Transparent conducting Sb-doped SnO2 thin films grown by pulsed-laser deposition,” Appl. Phys. Lett. 84, 218–220 (2004).
[CrossRef]

Ceram. Int. (1)

P. K. Manoj, B. Joseph, and V. K. Vaidyan, “Preparation and characterization of indium-doped tin oxide thin films,” Ceram. Int. 33, 273–278 (2007).
[CrossRef]

J. Appl. Phys. (3)

A. Rakhshani, Y. Makdish, and H. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films,” J. Appl. Phys. 83, 1049–1057 (1998).
[CrossRef]

O. K. Varghese and L. K. Malhotra, “Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy,” J. Appl. Phys. 87, 7457–7465 (2000).
[CrossRef]

B. Stjerna, E. Olsson, and C. G. Granqvist, “Optical and electrical properties of radio frequency sputtered tin oxide films doped with oxygen vacancies, F, Sb, or Mo,” J. Appl. Phys. 76, 3797–3817 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Onuma, Z. Wang, H. Ito, M. Nakao, and K. Kamimura, “Preparation and piezoresistive properties of polycrystalline SnO2 films,” Jpn. J. Appl. Phys. 37, 963–964 (1998).
[CrossRef]

Thin Solid Films (5)

B. P. Howson, H. Barakova, and A. G. Spencer, “Reactive sputtering of electrically conducting tin oxide,” Thin Solid Films 196, 315–321 (1991).
[CrossRef]

B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor,” Thin Solid Films 402, 71–78 (2002).
[CrossRef]

D. Das and R. Banerjee, “Properties of electron-beam-evaporated tin oxide films,” Thin Solid Films 147, 321–331 (1987).
[CrossRef]

S. R. Vishwakarma, J. P. Upadhyay, and H. C. Prasad, “Physical properties of arsenic-doped tin oxide thin films,” Thin Solid Films 176, 99–110 (1989).
[CrossRef]

J. P. Upadhyay, S. R. Vishwakarma, and H. C. Prasad, “Studies of electrical and optical properties of SnO2:P films,” Thin Solid Films 169, 195–204 (1989).
[CrossRef]

Other (1)

H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Electrical properties of doped tin oxide films,” in Semiconducting Transparent Thin Films (Institute of Physics, 1995), pp. 158–170.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the sputtering system.

Fig. 2
Fig. 2

Transmittance spectra of doped and undoped SnO 2 films deposited with various ratios of CF 4 to O 2 gas.

Fig. 3
Fig. 3

Transmittance spectra of a tin fluoride film.

Fig. 4
Fig. 4

Refractive index of doped and undoped SnO 2 films deposited with various ratios of CF 4 to O 2 gas.

Fig. 5
Fig. 5

Extinction coefficient of doped and undoped SnO 2 films deposited with various ratios of CF 4 to O 2 gas.

Fig. 6
Fig. 6

Transmittance spectra of FTO and SnO 2 films and FTO films annealed in vacuum at various temperatures for 1 h .

Fig. 7
Fig. 7

X-ray diffraction patterns for SnO 2 , FTO, and FTO films annealed at 350 ° C and 400 ° C for 1 h in vacuum.

Fig. 8
Fig. 8

Average transmittance of FTO films annealed in air at various temperatures.

Fig. 9
Fig. 9

Electrical properties of FTO films annealed in air at various temperatures.

Fig. 10
Fig. 10

Resistivity of an ITO single layer and ITO/FTO multilayers heat treated in air.

Fig. 11
Fig. 11

Average transmittance of an ITO single layer and ITO/FTO multilayers heat treated in air.

Tables (2)

Tables Icon

Table 1 Optical and Electrical Properties of FTO Films Prepared at 300 ° C and Annealed at Various Temperatures for 1 h in Vacuum

Tables Icon

Table 2 Deposition Parameters and the Optical and Electrical Properties of ITO and FTO Films

Metrics