Abstract

We applied the laser interference lithography method to form a patterned sapphire substrate (PSS). A three-dimensional photonic crystal was formed by autocloning the PSS with alternate Ta2O5/SiO2 coatings. A high total integrated reflectance (TIR) band was obtained around the 410 to 470nm wavelength range that matched the emission spectrum of the gallium nitride (GaN) light-emitting diode (LED) for application in manipulating the light extraction of the sapphire-based GaN LED.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
    [CrossRef]
  2. M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77, 4256–4258 (2000).
    [CrossRef]
  3. S. Kawakami, T. Kawashima, and T. Satoa, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
    [CrossRef]
  4. C. Y. Huang, H. M. Ku, and S. Chao, “Surface profile control of the autocloned photonic crystal by ion-beam-sputter deposition with radio-frequency-bias etching,” Appl. Opt. 48, 69–73(2009).
    [CrossRef]
  5. M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).
  6. K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
    [CrossRef]
  7. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
    [CrossRef]
  8. H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
    [CrossRef]
  9. O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
    [CrossRef]
  10. A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
    [CrossRef]
  11. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
    [CrossRef]
  12. J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
    [CrossRef]
  13. C. Y. Huang, H. M. Ku, and S. Chao, “Light extraction enhancement for InGaN/GaN LED by three dimensional auto-cloned photonic crystal,” Opt. Express 17, 23702–23711(2009).
    [CrossRef]

2009 (2)

2005 (1)

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

2004 (1)

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

2003 (1)

H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
[CrossRef]

2002 (2)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

2000 (1)

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77, 4256–4258 (2000).
[CrossRef]

1999 (3)

S. Kawakami, T. Kawashima, and T. Satoa, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[CrossRef]

1997 (2)

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[CrossRef]

Akutsu, N.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

Boyd, R. D.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

Britten, J. A.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

Carter, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Chao, S.

Chiba, T.

H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
[CrossRef]

Farhoud, M.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Fernandez, A.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

Ferrera, J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Hanaizumi, O.

O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[CrossRef]

Hawryluk, A. M.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

Hikage, M.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

Huang, C. Y.

Ishino, N.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Kania, D. R.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

Kawakami, S.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
[CrossRef]

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77, 4256–4258 (2000).
[CrossRef]

O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Satoa, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[CrossRef]

Kawashima, T.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77, 4256–4258 (2000).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Satoa, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

Kim, K. S.

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Ko, H.

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Ku, H. M.

Kuramochi, E.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

Lee, C. W.

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Lee, J. M.

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Lochtefeld, A. J.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Miura, K.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Murphy, T. E.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Nguyen, H. T.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

Notomi, M.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77, 4256–4258 (2000).
[CrossRef]

Oh, S. H.

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Ohkubo, H.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
[CrossRef]

Ohtera, Y.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[CrossRef]

Okano, H.

H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
[CrossRef]

Park, M. H.

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Park, S.

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Perry, M. D.

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

Ross, C. A.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Sato, T.

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[CrossRef]

Satoa, T.

S. Kawakami, T. Kawashima, and T. Satoa, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

Schattenburg, M. L.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Shinya, A.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

Smith, H. I.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Takahasgi, J.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

Takahashi, C.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

Tamamura, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77, 4256–4258 (2000).
[CrossRef]

Yamada, K.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

Yokohama, I.

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys. Lett. 77, 4256–4258 (2000).
[CrossRef]

S. Kawakami, T. Kawashima, and T. Satoa, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys. Lett. 74, 463–465 (1999).
[CrossRef]

O. Hanaizumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/SiO2 three-dimensional photonic crystals: fabrication and observation,” Appl. Phys. Lett. 74, 777–779 (1999).
[CrossRef]

Electrochem. Solid-State Lett. (1)

J. M. Lee, S. H. Oh, C. W. Lee, H. Ko, S. Park, K. S. Kim, and M. H. Park, “Fabrication of InGaAsP/InP two-dimensional periodic nanostructure with variable sizes and periods using laser holography and reactive ion etching,” Electrochem. Solid-State Lett. 7, G11 –G13 (2004).
[CrossRef]

Electron. Commun. Jpn. Part 2 Electron. (1)

K. Miura, Y. Ohtera, H. Ohkubo, T. Sato, N. Akutsu, M. Hikage, N. Ishino, T. Kawashima, and S. Kawakami, “Loss reduction of photonic crystal waveguide fabricated by the auto cloning technology,” Electron. Commun. Jpn. Part 2 Electron. 88, 10–20 (2005).
[CrossRef]

Electron. Lett. (1)

S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electron. Lett. 33, 1260–1261 (1997).
[CrossRef]

IEICE Trans. Electron. (1)

M. Notomi, A. Shinya, E. Kuramochi, I. Yokohama, C. Takahashi, K. Yamada, J. Takahasgi, T. Kawashima, and S. Kawakami, “Si-based photonic crystals and photonic-bandgap waveguides,” IEICE Trans. Electron. E85-C, 1025–1032(2002).

J. Vac. Sci. Technol. B (2)

A. Fernandez, H. T. Nguyen, J. A. Britten, R. D. Boyd, M. D. Perry, D. R. Kania, and A. M. Hawryluk, “Use of interference lithography to pattern arrays of submicron resist structures for field emission flat panel displays,” J. Vac. Sci. Technol. B 15, 729–735 (1997).
[CrossRef]

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17, 3182–3185 (1999).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Ohkubo, Y. Ohtera, S. Kawakami, T. Chiba, and H. Okano, “Integration and evaluation of multichannel photonic crystal wavelength filters consisting of autocloned Ta2O5/SiO2 multilayer thin films,” Jpn. J. Appl. Phys. 42, L1219–L1221 (2003).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Photonic crystals for the visible range fabricated by autocloning technique and their application,” Opt. Quantum Electron. 34, 63–70 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the single-beam interference laser lithography system.

Fig. 2
Fig. 2

Schematics and SEM pictures for the end product of each step in the PSS fabrication processes: (a) PR, ARP, and SiN x multilayer coating; (b) LIL and development; (c) RIE process to transfer the PR pattern to SiN x ; and (d) ICP process to form the PSS.

Fig. 3
Fig. 3

Column/hole diameters versus laser dose: (a)–(f) SEM pictures of the PR patterns exposed by a different laser dose.

Fig. 4
Fig. 4

(a) Schematics of the 3D APhC. SEM pictures of the (b) cross section and (c) overview for the 3D APhC.

Fig. 5
Fig. 5

Simulated TIR spectra for three different layer thickness combinations.

Fig. 6
Fig. 6

Total integrated reflectance and TIT of the 3D photonic crystal at normal angle of incidence: solid curve, measurement; dashed curve, simulation. Thicknesses are 58 nm / 58 nm ( Ta 2 O 5 / SiO 2 ) .

Tables (1)

Tables Icon

Table 1 Process Parameters for RIE and ICP Etching

Metrics