Abstract

We demonstrated the generation of wavelength-switchable picosecond pulses from a self-seeded Fabry–Perot laser diode that used a tilted fiber Bragg grating (FBG) formed in a graded-index multimode fiber as an external optical feedback element, where wavelength switching was achieved by controlling the modal distribution in the FBG. We measured the reflection spectra of multimode FBGs fabricated with different tilt angles and discussed the effects of the tilt angle on wavelength selection. By using a 20mm long 1.65° tilted FBG and a fiber deformer to control the modal distribution in the FBG, we generated 2GHz pulses with a wavelength switchable over 14 wavelengths at a spacing of 0.8nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Li, K. S. Chiang, and W. A. Gambling, “Wavelength tuning in self-seeded gain-switched Fabry–Perot laser diode with Moiré gratings,” Electron. Lett. 35, 2209–2210 (1999).
    [CrossRef]
  2. M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
    [CrossRef]
  3. S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
    [CrossRef]
  4. S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry–Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
    [CrossRef]
  5. S. Li, K. S. Chiang, and W. A. Gambling, “Fast wavelength tuning of a self-seeded Fabry–Perot laser diode with a Fabry–Perot semiconductor filter,” IEEE Photonics Technol. Lett. 13, 1364–1366 (2001).
    [CrossRef]
  6. H. Ding, S. Li, Z. Fang, and K. T. Chan, “Wavelength switching of semiconductor laser self-seeding from a chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 9, 901–903(1997).
    [CrossRef]
  7. D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
    [CrossRef]
  8. Y. Liu, K. S. Chiang, and P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photonics Technol. Lett. 16, 1742–1744 (2004).
    [CrossRef]
  9. Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16, 572–574 (2004).
    [CrossRef]
  10. Y. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photonics Technol. Lett. 17, 450–452 (2005).
    [CrossRef]
  11. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18, 230–235 (2000).
    [CrossRef]
  12. L. Su, K. S. Chiang, and C. Lu, “Microbend-induced mode coupling in a graded-index multimode fiber,” Appl. Opt. 44, 7394–7402 (2005).
    [CrossRef] [PubMed]
  13. L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, “Design of wavelength-switching erbium-doped fiber lasers with multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photonics Technol. Lett. 17, 315–317(2005).
    [CrossRef]
  14. C. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, “Switchable multiwavelength SOA-fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 252, 52–57(2005).
    [CrossRef]
  15. C. Zhao, Z. Li, M. S. Demokan, X. Yang, W. Jin, and C. Lu, “Studies on strain and temperature characteristics of a slanted multimode fiber Bragg grating and its application in multiwavelength fiber Raman ring laser,” J. Lightwave Technol. 24, 2394–2400 (2006).
    [CrossRef]
  16. G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
    [CrossRef]
  17. C. Zhao, X. Yang, M. S. Demokan, and W. Jin, “Simultaneous temperature and refractive index measurements using a 3° slanted multimode fiber Bragg grating,” J. Lightwave Technol. 24, 879–833 (2006).
    [CrossRef]
  18. H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
    [CrossRef]

2006

2005

H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photonics Technol. Lett. 17, 450–452 (2005).
[CrossRef]

L. Su, K. S. Chiang, and C. Lu, “Microbend-induced mode coupling in a graded-index multimode fiber,” Appl. Opt. 44, 7394–7402 (2005).
[CrossRef] [PubMed]

L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, “Design of wavelength-switching erbium-doped fiber lasers with multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photonics Technol. Lett. 17, 315–317(2005).
[CrossRef]

C. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, “Switchable multiwavelength SOA-fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 252, 52–57(2005).
[CrossRef]

2004

Y. Liu, K. S. Chiang, and P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photonics Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16, 572–574 (2004).
[CrossRef]

2001

S. Li, K. S. Chiang, and W. A. Gambling, “Fast wavelength tuning of a self-seeded Fabry–Perot laser diode with a Fabry–Perot semiconductor filter,” IEEE Photonics Technol. Lett. 13, 1364–1366 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

2000

T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, “Bragg gratings in multimode and few-mode optical fibers,” J. Lightwave Technol. 18, 230–235 (2000).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry–Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[CrossRef]

1999

S. Li, K. S. Chiang, and W. A. Gambling, “Wavelength tuning in self-seeded gain-switched Fabry–Perot laser diode with Moiré gratings,” Electron. Lett. 35, 2209–2210 (1999).
[CrossRef]

1997

H. Ding, S. Li, Z. Fang, and K. T. Chan, “Wavelength switching of semiconductor laser self-seeding from a chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 9, 901–903(1997).
[CrossRef]

1996

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

1992

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Bennion, I.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

Bimberg, D.

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Chan, K. T.

H. Ding, S. Li, Z. Fang, and K. T. Chan, “Wavelength switching of semiconductor laser self-seeding from a chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 9, 901–903(1997).
[CrossRef]

Chiang, K. S.

Y. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photonics Technol. Lett. 17, 450–452 (2005).
[CrossRef]

L. Su, K. S. Chiang, and C. Lu, “Microbend-induced mode coupling in a graded-index multimode fiber,” Appl. Opt. 44, 7394–7402 (2005).
[CrossRef] [PubMed]

Y. Liu, K. S. Chiang, and P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photonics Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16, 572–574 (2004).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Fast wavelength tuning of a self-seeded Fabry–Perot laser diode with a Fabry–Perot semiconductor filter,” IEEE Photonics Technol. Lett. 13, 1364–1366 (2001).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry–Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Wavelength tuning in self-seeded gain-switched Fabry–Perot laser diode with Moiré gratings,” Electron. Lett. 35, 2209–2210 (1999).
[CrossRef]

Chu, P. L.

Y. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photonics Technol. Lett. 17, 450–452 (2005).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photonics Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Demokan, M. S.

Ding, H.

H. Ding, S. Li, Z. Fang, and K. T. Chan, “Wavelength switching of semiconductor laser self-seeding from a chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 9, 901–903(1997).
[CrossRef]

Djambova, T. V.

Fang, Z.

H. Ding, S. Li, Z. Fang, and K. T. Chan, “Wavelength switching of semiconductor laser self-seeding from a chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 9, 901–903(1997).
[CrossRef]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Fischbeck, G.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Gambling, W. A.

S. Li, K. S. Chiang, and W. A. Gambling, “Fast wavelength tuning of a self-seeded Fabry–Perot laser diode with a Fabry–Perot semiconductor filter,” IEEE Photonics Technol. Lett. 13, 1364–1366 (2001).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry–Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Wavelength tuning in self-seeded gain-switched Fabry–Perot laser diode with Moiré gratings,” Electron. Lett. 35, 2209–2210 (1999).
[CrossRef]

Garbuzov, D. Z.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Gorbachov, A. V.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Gupta, S.

Hao, J.

L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, “Design of wavelength-switching erbium-doped fiber lasers with multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photonics Technol. Lett. 17, 315–317(2005).
[CrossRef]

Huhse, D.

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Jin, W.

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Li, S.

S. Li, K. S. Chiang, and W. A. Gambling, “Fast wavelength tuning of a self-seeded Fabry–Perot laser diode with a Fabry–Perot semiconductor filter,” IEEE Photonics Technol. Lett. 13, 1364–1366 (2001).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry–Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Wavelength tuning in self-seeded gain-switched Fabry–Perot laser diode with Moiré gratings,” Electron. Lett. 35, 2209–2210 (1999).
[CrossRef]

H. Ding, S. Li, Z. Fang, and K. T. Chan, “Wavelength switching of semiconductor laser self-seeding from a chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 9, 901–903(1997).
[CrossRef]

Li, Z.

C. Zhao, Z. Li, M. S. Demokan, X. Yang, W. Jin, and C. Lu, “Studies on strain and temperature characteristics of a slanted multimode fiber Bragg grating and its application in multiwavelength fiber Raman ring laser,” J. Lightwave Technol. 24, 2394–2400 (2006).
[CrossRef]

C. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, “Switchable multiwavelength SOA-fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 252, 52–57(2005).
[CrossRef]

L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, “Design of wavelength-switching erbium-doped fiber lasers with multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photonics Technol. Lett. 17, 315–317(2005).
[CrossRef]

Liu, Y.

Y. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photonics Technol. Lett. 17, 450–452 (2005).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photonics Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

Lu, C.

Mascher, P.

H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
[CrossRef]

Mizunami, T.

Niiho, T.

Schell, M.

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Su, L.

L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, “Design of wavelength-switching erbium-doped fiber lasers with multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photonics Technol. Lett. 17, 315–317(2005).
[CrossRef]

L. Su, K. S. Chiang, and C. Lu, “Microbend-induced mode coupling in a graded-index multimode fiber,” Appl. Opt. 44, 7394–7402 (2005).
[CrossRef] [PubMed]

Tarasov, D. S.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Utz, W.

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

Wang, Y.

L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, “Design of wavelength-switching erbium-doped fiber lasers with multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photonics Technol. Lett. 17, 315–317(2005).
[CrossRef]

H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
[CrossRef]

Weber, A. G.

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

Williams, J. A. R.

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

Wojcik, J.

H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
[CrossRef]

Xu, C. Q.

H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
[CrossRef]

Yang, X.

Yu, H. G.

H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
[CrossRef]

Zhang, L.

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

Zhao, C.

Appl. Opt.

Appl. Phys. Lett.

S. Li, K. S. Chiang, and W. A. Gambling, “Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry–Perot laser diode with a high-birefringence fiber loop mirror,” Appl. Phys. Lett. 76, 3676–3678 (2000).
[CrossRef]

D. Huhse, M. Schell, W. Utz, D. Bimberg, J. A. R. Williams, L. Zhang, and I. Bennion, “Fast wavelength switching of semiconductor laser pulses by self-seeding,” Appl. Phys. Lett. 69, 2018–2020 (1996).
[CrossRef]

Electron. Lett.

S. Li, K. S. Chiang, and W. A. Gambling, “Wavelength tuning in self-seeded gain-switched Fabry–Perot laser diode with Moiré gratings,” Electron. Lett. 35, 2209–2210 (1999).
[CrossRef]

M. Schell, D. Huhse, A. G. Weber, G. Fischbeck, D. Bimberg, D. S. Tarasov, A. V. Gorbachov, and D. Z. Garbuzov, “20 nmwavelength tunable single mode picosecond pulse generation at 1.3 μm by self-seeded gain-switched semiconductor laser,” Electron. Lett. 28, 2154–2155 (1992).
[CrossRef]

IEEE J. Quantum Electron.

H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher, “Spectral investigation of multimode fiber Bragg grating based external-cavity semiconductor lasers,” IEEE J. Quantum Electron. 41, 1492–1501 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

L. Su, C. Lu, J. Hao, Z. Li, and Y. Wang, “Design of wavelength-switching erbium-doped fiber lasers with multimode fiber Bragg grating using spatial-mode excitation and selection techniques,” IEEE Photonics Technol. Lett. 17, 315–317(2005).
[CrossRef]

S. Li, K. S. Chiang, W. A. Gambling, Y. Liu, L. Zhang, and I. Bennion, “Self-seeding of Fabry–Pérot laser diode for generating wavelength-tunable chirp-compensated single-mode pulses with high sidemode suppression ratio,” IEEE Photonics Technol. Lett. 12, 1441–1443 (2000).
[CrossRef]

S. Li, K. S. Chiang, and W. A. Gambling, “Fast wavelength tuning of a self-seeded Fabry–Perot laser diode with a Fabry–Perot semiconductor filter,” IEEE Photonics Technol. Lett. 13, 1364–1366 (2001).
[CrossRef]

H. Ding, S. Li, Z. Fang, and K. T. Chan, “Wavelength switching of semiconductor laser self-seeding from a chirped fiber Bragg grating,” IEEE Photonics Technol. Lett. 9, 901–903(1997).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Generation of dual-wavelength picosecond pulses from a self-seeded Fabry–Perot laser diode and a polarization-maintaining fiber Bragg grating,” IEEE Photonics Technol. Lett. 16, 1742–1744 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photonics Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, and P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photonics Technol. Lett. 17, 450–452 (2005).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

G. Laffont and P. Ferdinand, “Tilted short-period fiber-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Opt. Commun.

C. Zhao, Z. Li, M. S. Demokan, X. Yang, and W. Jin, “Switchable multiwavelength SOA-fiber ring laser based on a slanted multimode fiber Bragg grating,” Opt. Commun. 252, 52–57(2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the proposed self-seeded FPLD, which employs a tilted multimode FBG as the wavelength- selection element and a fiber deformer to control the modal distribution in the fiber.

Fig. 2
Fig. 2

Reflection spectra of multimode FBGs fabricated with different tilt angles: (a)  0 ° , (b)  1.2 ° , (c)  1.65 ° , and (d)  1.9 ° . Each set consists of four spectra, which, from the top to the bottom, show the effects of increasing forces applied to the fiber deformer with the top one corresponding to a zero force.

Fig. 3
Fig. 3

Transmission and reflection spectra of a 2.9 ° tilted multimode FBG.

Fig. 4
Fig. 4

(a) Spectral and (b) temporal characteristics of the output pulses at the wavelength 1554.35 nm generated from the self-seeded FPLD.

Fig. 5
Fig. 5

Characteristics of the output pulses at the 14 wavelengths: (a) SMSR, (b) peak power, and (c) pulse width.

Metrics