Abstract

We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–84.
  2. U. Platt and J. Stutz, “Differential optical absorption spectroscopy, principles and applications,” in Physics of Earth and Space Environments (Springer, 2008), Vol.  15, p. 597.
  3. H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.
  4. H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).
  5. A. Geyer and J. Stutz, “Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,” J. Geophys. Res. 109, D12307 (2004).
    [CrossRef]
  6. J. Stutz and U. Platt, “Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer,” Appl. Opt. 36, 1105–1115 (1997).
    [CrossRef]
  7. A. Merten, “Neues Design von Langpfad-DOAS-Instrumenten basierend auf Faseroptiken und Anwendungen der Untersuchung der urbanen Atmosphäre,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2008).
  8. C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
    [CrossRef]
  9. T. Hermes, “Lichtquellen und Optik für die Differentielle optische Absorptionsspektroskopie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2000).
  10. C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077–2088 (2006).
    [CrossRef]
  11. N. E. Rityn, “Optics of corner cube reflectors,” Sov. J. Opt. Technol. 34, 198–201 (1967).
  12. H. J. Veitel, “Vertical profiles of NO2 and HONO in the boundary layer,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2002).
  13. J. Lösch, “Bestimmung von NO2—und SO2—Emissionen von Kraftfahrzeugen mittels DOAS-Tomographie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2001).
  14. T. Rudolf, “Beschreibung und Charakterisierung einer Lang-Pfad-DOAS-Apparatur und eine Analyse des Auswertverfahrens,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 1993).
  15. FrankTräger, ed., Springer Handbook of Lasers and Optics (Springer, 2007), pp. 69–70.
  16. J. P. Pérez, Optik (Spektrum Akademischer Verlag, 1996), pp. 514–515.
  17. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).
    [CrossRef]
  18. D. L. Fried, “Optical heterodyne detection of an atmospheric distorted signal wave front,” Proc. IEEE 55, 57–76 (1967).
    [CrossRef]
  19. J. W. Goodman, Statistical Optics (Wiley, 1985), pp. 427–431.
  20. R. Jüngling, “Simulation gerichteter Ausbreitung optischer Wellen in turbulenter Atmosphäre,” Diploma thesis (Westfälische Wilhems-Universität Münster, 2001).
  21. G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).
  22. J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: eine neue generation von Geräten und Algorithmen,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 1996).
  23. W. Roedel, Physik Unserer Umwelt: Die Atmosphäre (Springer Verlag, 1992), pp. 27–30.
  24. J. C. E. Buxmann, “Optimierte Langpfad-DOAS-Messungen von BrO und ClO an der irischen Westküste,” Diplomathesis (Institute for Environmental Physics, University of Heidelberg, 2008).
  25. K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
    [CrossRef]
  26. H. Sihler, C. Kern, D. Pohler, and U. Platt, “Applying light-emitting diodes with narrowband emission features in differential spectroscopy,” Opt. Lett. 34, 3716–3718 (2009).
    [CrossRef]
  27. D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010).
    [CrossRef]
  28. J. Tschritter, “Entwicklung einer DOAS-Optik der 3. Generation und ein Vergleich mit herkömmlichen Systemen,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2007).

2010 (2)

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010).
[CrossRef]

2009 (2)

H. Sihler, C. Kern, D. Pohler, and U. Platt, “Applying light-emitting diodes with narrowband emission features in differential spectroscopy,” Opt. Lett. 34, 3716–3718 (2009).
[CrossRef]

C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
[CrossRef]

2008 (3)

U. Platt and J. Stutz, “Differential optical absorption spectroscopy, principles and applications,” in Physics of Earth and Space Environments (Springer, 2008), Vol.  15, p. 597.

A. Merten, “Neues Design von Langpfad-DOAS-Instrumenten basierend auf Faseroptiken und Anwendungen der Untersuchung der urbanen Atmosphäre,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2008).

J. C. E. Buxmann, “Optimierte Langpfad-DOAS-Messungen von BrO und ClO an der irischen Westküste,” Diplomathesis (Institute for Environmental Physics, University of Heidelberg, 2008).

2007 (2)

J. Tschritter, “Entwicklung einer DOAS-Optik der 3. Generation und ein Vergleich mit herkömmlichen Systemen,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2007).

FrankTräger, ed., Springer Handbook of Lasers and Optics (Springer, 2007), pp. 69–70.

2006 (1)

2005 (1)

G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).

2004 (1)

A. Geyer and J. Stutz, “Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,” J. Geophys. Res. 109, D12307 (2004).
[CrossRef]

2002 (2)

H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).

H. J. Veitel, “Vertical profiles of NO2 and HONO in the boundary layer,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2002).

2001 (2)

J. Lösch, “Bestimmung von NO2—und SO2—Emissionen von Kraftfahrzeugen mittels DOAS-Tomographie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2001).

R. Jüngling, “Simulation gerichteter Ausbreitung optischer Wellen in turbulenter Atmosphäre,” Diploma thesis (Westfälische Wilhems-Universität Münster, 2001).

2000 (1)

T. Hermes, “Lichtquellen und Optik für die Differentielle optische Absorptionsspektroskopie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2000).

1997 (1)

1996 (2)

J. P. Pérez, Optik (Spektrum Akademischer Verlag, 1996), pp. 514–515.

J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: eine neue generation von Geräten und Algorithmen,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 1996).

1994 (1)

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–84.

1993 (1)

T. Rudolf, “Beschreibung und Charakterisierung einer Lang-Pfad-DOAS-Apparatur und eine Analyse des Auswertverfahrens,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 1993).

1992 (1)

W. Roedel, Physik Unserer Umwelt: Die Atmosphäre (Springer Verlag, 1992), pp. 27–30.

1990 (1)

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.

1985 (1)

J. W. Goodman, Statistical Optics (Wiley, 1985), pp. 427–431.

1967 (2)

N. E. Rityn, “Optics of corner cube reflectors,” Sov. J. Opt. Technol. 34, 198–201 (1967).

D. L. Fried, “Optical heterodyne detection of an atmospheric distorted signal wave front,” Proc. IEEE 55, 57–76 (1967).
[CrossRef]

1965 (1)

Axelsson, H.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.

Buxmann, J.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

Buxmann, J. C. E.

J. C. E. Buxmann, “Optimierte Langpfad-DOAS-Messungen von BrO und ClO an der irischen Westküste,” Diplomathesis (Institute for Environmental Physics, University of Heidelberg, 2008).

Dunlop, C. N.

G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).

Fried, D. L.

D. L. Fried, “Optical heterodyne detection of an atmospheric distorted signal wave front,” Proc. IEEE 55, 57–76 (1967).
[CrossRef]

D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).
[CrossRef]

Friess, U.

D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010).
[CrossRef]

Galle, B.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.

Geyer, A.

A. Geyer and J. Stutz, “Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,” J. Geophys. Res. 109, D12307 (2004).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 1985), pp. 427–431.

Gustavsson, K.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.

Hermes, T.

T. Hermes, “Lichtquellen und Optik für die Differentielle optische Absorptionsspektroskopie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2000).

Herrera, M.

C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
[CrossRef]

Jüngling, R.

R. Jüngling, “Simulation gerichteter Ausbreitung optischer Wellen in turbulenter Atmosphäre,” Diploma thesis (Westfälische Wilhems-Universität Münster, 2001).

Kern, C.

Kromer, B.

H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).

Lösch, J.

J. Lösch, “Bestimmung von NO2—und SO2—Emissionen von Kraftfahrzeugen mittels DOAS-Tomographie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2001).

Love, G. D.

G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).

Merten, A.

A. Merten, “Neues Design von Langpfad-DOAS-Instrumenten basierend auf Faseroptiken und Anwendungen der Untersuchung der urbanen Atmosphäre,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2008).

Mössner, M.

H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).

Neary, T.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

O’Dowd, C.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

Patrick, S.

G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).

Pérez, J. P.

J. P. Pérez, Optik (Spektrum Akademischer Verlag, 1996), pp. 514–515.

Platt, U.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010).
[CrossRef]

H. Sihler, C. Kern, D. Pohler, and U. Platt, “Applying light-emitting diodes with narrowband emission features in differential spectroscopy,” Opt. Lett. 34, 3716–3718 (2009).
[CrossRef]

C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
[CrossRef]

U. Platt and J. Stutz, “Differential optical absorption spectroscopy, principles and applications,” in Physics of Earth and Space Environments (Springer, 2008), Vol.  15, p. 597.

C. Kern, S. Trick, B. Rippel, and U. Platt, “Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements,” Appl. Opt. 45, 2077–2088 (2006).
[CrossRef]

H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).

J. Stutz and U. Platt, “Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer,” Appl. Opt. 36, 1105–1115 (1997).
[CrossRef]

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–84.

Pohler, D.

Pöhler, D.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010).
[CrossRef]

Ragnarsson, P.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.

Rippel, B.

Rityn, N. E.

N. E. Rityn, “Optics of corner cube reflectors,” Sov. J. Opt. Technol. 34, 198–201 (1967).

Rivera, C.

C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
[CrossRef]

Roedel, W.

W. Roedel, Physik Unserer Umwelt: Die Atmosphäre (Springer Verlag, 1992), pp. 27–30.

Rudi, M.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.

Rudolf, T.

T. Rudolf, “Beschreibung und Charakterisierung einer Lang-Pfad-DOAS-Apparatur und eine Analyse des Auswertverfahrens,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 1993).

Saunter, C. D.

G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).

Seitz, K.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

Sihler, H.

H. Sihler, C. Kern, D. Pohler, and U. Platt, “Applying light-emitting diodes with narrowband emission features in differential spectroscopy,” Opt. Lett. 34, 3716–3718 (2009).
[CrossRef]

C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
[CrossRef]

Sommer, T.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

Stutz, J.

U. Platt and J. Stutz, “Differential optical absorption spectroscopy, principles and applications,” in Physics of Earth and Space Environments (Springer, 2008), Vol.  15, p. 597.

A. Geyer and J. Stutz, “Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,” J. Geophys. Res. 109, D12307 (2004).
[CrossRef]

J. Stutz and U. Platt, “Improving long-path differential optical absorption spectroscopy with a quartz-fiber mode mixer,” Appl. Opt. 36, 1105–1115 (1997).
[CrossRef]

J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: eine neue generation von Geräten und Algorithmen,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 1996).

Trick, S.

Tschritter, J.

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

J. Tschritter, “Entwicklung einer DOAS-Optik der 3. Generation und ein Vergleich mit herkömmlichen Systemen,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2007).

Veitel, H.

H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).

Veitel, H. J.

H. J. Veitel, “Vertical profiles of NO2 and HONO in the boundary layer,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2002).

Vogel, L.

D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010).
[CrossRef]

C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
[CrossRef]

Appl. Opt. (2)

Atmos. Chem. Phys. (1)

K. Seitz, J. Buxmann, D. Pöhler, T. Sommer, J. Tschritter, T. Neary, C. O’Dowd, and U. Platt, “The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations,” Atmos. Chem. Phys. 10, 2117–2128 (2010).
[CrossRef]

Bull. Volcanol. (1)

C. Kern, H. Sihler, L. Vogel, C. Rivera, M. Herrera, and U. Platt, “Halogen oxide measurements at Masaya volcano, Nicaragua using active long path differential optical absorption spectroscopy,” Bull. Volcanol. 71, 659–670 (2009).
[CrossRef]

Environ. Sci. Pollut. Res. Int. (1)

H. Veitel, B. Kromer, M. Mössner, and U. Platt, “New techniques for measurements of atmospheric vertical trace gas profiles using DOAS,” Environ. Sci. Pollut. Res. Int. 41, 17–26(2002).

J. Geophys. Res. (1)

A. Geyer and J. Stutz, “Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 2. Model studies on the altitude dependence of composition and chemistry,” J. Geophys. Res. 109, D12307 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Proc. IEEE (1)

D. L. Fried, “Optical heterodyne detection of an atmospheric distorted signal wave front,” Proc. IEEE 55, 57–76 (1967).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Pöhler, L. Vogel, U. Friess, and U. Platt, “Observation of halogen species in the Amundsen Gulf, Arctic, by active long-path differential optical absorption spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 107, 6582–6587 (2010).
[CrossRef]

Proc. SPIE (1)

G. D. Love, C. N. Dunlop, S. Patrick, and C. D. Saunter, “Horizontal turbulence measurements using SLODAR,” Proc. SPIE 5891, 27–32 (2005).

Sov. J. Opt. Technol. (1)

N. E. Rityn, “Optics of corner cube reflectors,” Sov. J. Opt. Technol. 34, 198–201 (1967).

Other (16)

H. J. Veitel, “Vertical profiles of NO2 and HONO in the boundary layer,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2002).

J. Lösch, “Bestimmung von NO2—und SO2—Emissionen von Kraftfahrzeugen mittels DOAS-Tomographie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2001).

T. Rudolf, “Beschreibung und Charakterisierung einer Lang-Pfad-DOAS-Apparatur und eine Analyse des Auswertverfahrens,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 1993).

FrankTräger, ed., Springer Handbook of Lasers and Optics (Springer, 2007), pp. 69–70.

J. P. Pérez, Optik (Spektrum Akademischer Verlag, 1996), pp. 514–515.

J. W. Goodman, Statistical Optics (Wiley, 1985), pp. 427–431.

R. Jüngling, “Simulation gerichteter Ausbreitung optischer Wellen in turbulenter Atmosphäre,” Diploma thesis (Westfälische Wilhems-Universität Münster, 2001).

U. Platt, “Differential optical absorption spectroscopy (DOAS),” in Air Monitoring by Spectroscopic Techniques, M.W.Sigrist, ed. (Wiley, 1994), pp. 27–84.

U. Platt and J. Stutz, “Differential optical absorption spectroscopy, principles and applications,” in Physics of Earth and Space Environments (Springer, 2008), Vol.  15, p. 597.

H. Axelsson, B. Galle, K. Gustavsson, P. Ragnarsson, and M. Rudi, “A transmitting/receiving telescope for DOAS-measurements using retro-reflector technique,” in Optical Remote Sensing of the Atmosphere, OSA Technical Digest Series (Optical Society of America, 1990), Vol.  4, pp. 641–644.

T. Hermes, “Lichtquellen und Optik für die Differentielle optische Absorptionsspektroskopie,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2000).

A. Merten, “Neues Design von Langpfad-DOAS-Instrumenten basierend auf Faseroptiken und Anwendungen der Untersuchung der urbanen Atmosphäre,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 2008).

J. Stutz, “Messung der Konzentration troposphärischer Spurenstoffe mittels Differentieller-Optischer-Absorptionsspektroskopie: eine neue generation von Geräten und Algorithmen,” Ph.D. thesis (Institute for Environmental Physics, University of Heidelberg, 1996).

W. Roedel, Physik Unserer Umwelt: Die Atmosphäre (Springer Verlag, 1992), pp. 27–30.

J. C. E. Buxmann, “Optimierte Langpfad-DOAS-Messungen von BrO und ClO an der irischen Westküste,” Diplomathesis (Institute for Environmental Physics, University of Heidelberg, 2008).

J. Tschritter, “Entwicklung einer DOAS-Optik der 3. Generation und ein Vergleich mit herkömmlichen Systemen,” Diploma thesis (Institute for Environmental Physics, University of Heidelberg, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Illustration of an active DOAS measurement, with separate emitting and receiving telescopes. The intensity I ( λ ) received by the spectrograph is not only affected by the trace gas absorption, but also by weaker wavelength-dependent extinction due to Rayleigh scattering, Mie scattering, and atmospheric turbulence.

Fig. 2
Fig. 2

Sketch of a coaxial LP instrument as introduced by Axelsson et al. [3].

Fig. 3
Fig. 3

Sketch of the fiber–LP instrument (1) with emitting and receiving fibers combined into a single bundle. The inset (2) shows the ends (left to right, B, E, F) of the fiber bundle.

Fig. 4
Fig. 4

Sketch of corner cube retro-reflector prism. Each ray is reflected three times at the prism planes before it leaves the reflector under the incidence angular but with an offset v h , which depends on its distance to the optical axis [4].

Fig. 5
Fig. 5

Path of rays at a retro-reflector in two dimensions. Rays from a pinpoint light source, e.g., at the main mirror, will be shifted with a maximum offset according to the diameter (h) of the reflector element. The resulting image is a uniformly illuminated bar of 2 h length. In three dimensions, the image of the point light source is a uniformly illuminated disc with a diameter of 2 h .

Fig. 6
Fig. 6

Path of rays for a simplified (only a single secondary mirror is considered, light source and receiving system are on the optical axis, and the extracting mirror is orientated parallel to the main mirror) coaxial LP telescope with a fixed lateral beam offset of 6 cm . The pinpoint light source is situated at the focal point. In reality, there will be a lateral shift with a random offset between + 6 cm and 6 cm according to the diameter of the conic cube retro-reflectors.

Fig. 7
Fig. 7

Modeled intensity distribution on the main mirror of a coaxial LP telescope. The left picture shows the emitted ring of the light. At the right, the intensity distribution of the received light calculated by convolution with cylindrical PSF and a radius of 6 cm is shown. Because of the lateral beam shift, a broadened image of the emitted ring occurs. Only light hitting the inner area will be caught by the receiving telescope. The transmission is calculated by integration over the area of the receiving telescope and dividing by the area of the total mirror. In this case— 30 cm main mirror and 22 cm receiving telescope diameter—11.5% of the total light emitted in direction of the main mirror falls on the receiving telescope. 16.9% of the light miss the main mirror.

Fig. 8
Fig. 8

Theoretical transmission efficiency of a coaxial telescope as a function of the diameter of the receiving section of the telescope primary mirror (“diameter of receiving telescope”). In the case of reflector elements with 6 cm diameter, a transmission of 11.5% can be reached for a 30 cm main mirror (solid black line), and a transmission of 14% can be reached for a 20 cm main mirror (dashed gray line). When using a reflector with 12 cm diameter, 15% transmission would be reached for a 30 cm main mirror (dotted gray line). Corner cube element diameters larger than 12 cm would yield lower values. The transmission was calculated by integration over the area of the receiving telescope primary mirror (see Fig. 7).

Fig. 9
Fig. 9

Path of rays for the fiber LP telescope with an extended light source in the focal plane and a fixed lateral beam offset of 6 cm on the retro-reflectors. All rays which are hitting the telescope again will be focused on the light source.

Fig. 10
Fig. 10

Because of the defocusing, the returning rays hit the emitting plane with an offset. Therefore, a separation of emitted and received light occurs. (Note that, as in Fig. 9, only one fixed lateral beam offset of 6 cm in the y direction is used for the simulation.).

Fig. 11
Fig. 11

Determination of the offset d of a single beam in the case of an ideal parabolic mirror or an ideal lens and a parallel beam shift v, a focal length f, and an object distance of g.

Fig. 12
Fig. 12

Modeled intensity distribution (2D model) in focal plane of fiber LP telescope for a single central emitting fiber with 100 μm diameter, a homogeneous rectangular emission intensity distribution (thick solid curve) and parabolic mirror (dashed curve), and a spherical mirror with no defocusing (thin solid curve) and a defocusing of Δ x = 2 mm (dotted curve). A focal length of 150 cm and an aperture of 30 cm are assumed. The gray areas mark the positions of emitting and receiving fibers.

Fig. 13
Fig. 13

Modeled intensity distribution of a fiber bundle with six emitting fibers and one central receiving fiber (core diameter 100 μm and total diameter 130 μm ), a 1.5 m focal length 30 cm main mirror diameter, and maximum offset of 6 cm at the reflectors. (a) Fiber bundle is located in the focus of the parabolic mirror (no defocusing), and no broadening occurs; the image of each emitting fiber returns to itself; there is no intensity in the receiving fiber. (b) Fiber bundle is moved by Δ x = 1.25 mm out of the focal plane. The images of the emitting fibers are broadened slightly. (c) Fiber bundle is moved Δ x = 4 mm out of the focal plane. The images are broadened considerably and overlap in the center, where the receiving fiber is situated.

Fig. 14
Fig. 14

Theoretical transmission of a fiber LP telescope with a single emitting and a single receiving fiber of equal diameters with different center-to-center distances z as function of the image broadening (left ordinate axis). The lower x axis gives the radius of the cylindrical PSF in units of the fiber radii. The upper x axes show the corresponding defocusing Δ x , assuming a fiber core di ameter of 100 μm , a retro-reflector diameter of 6 cm , and main mirror focal lengths of 1.5 m or 0.6 m , respectively. The right ordinate axis shows the transmissions for a combination of six emitting fibers and one receiving fiber. The thick dotted line marks a configuration used in our experiment with 100 μm fiber core and 130 μm outer diameter, which corresponds to a center-to-center distance of c = 2.6 fiber radii. Losses other than by geometry are neglected (see text).

Fig. 15
Fig. 15

Determination of the offset d of a single beam in case of ideal parabolic mirror or ideal lens and an angular offset (deviation from an ideal retro-reflector) Δ ϕ due to retro- reflector imperfections or atmospheric turbulence, a focal length f, and an object distance of g.

Fig. 16
Fig. 16

Modeled intensity distribution in focal plane of fiber LP telescope for a single central emitting fiber with a homogeneous rectangle intensity distribution (thick solid curve) and different deviations in the angular Δ ϕ , due to inaccuracies of the retro- reflector with Δ ϕ = 3 arc sec (dashed curve), the telescope mirror (dotted curve), and the mirror with Δ ϕ = 10 arc sec . The gray areas mark the positions of emitting and receiving fibers. A focal length of 150 cm and an aperture of 30 cm are assumed.

Fig. 17
Fig. 17

Modeled intensity distribution at position of reflector array at a distance of 1500 m for a single emitting fiber with 100 μm (left) and for a ring of six emitting fibers of the same diameter (right) at a defocusing Δ x = 4 mm ; the main mirror has a focal length of 150 cm and a diameter of 30 cm .

Fig. 18
Fig. 18

Modeled transmission T Fl of a fiber LP setup as a function of defocusing Δ x and reflector array diameter D r , with one emitting and one receiving fiber of 100 μm diameter ( 130 μm total diameter including cladding). The main mirror has a focal length of 150 cm and a diameter of 30 cm , the distance to the retro-reflector array is 3000 m , and each reflector element has a diameter of 6 cm . Effects of atmospheric turbulence or errors at mirror or reflectors are neglected. (Negative defocusing indicates that the fiber bundle is moved in direction of the main mirror.)

Fig. 19
Fig. 19

Drawn lines: maximum theoretical transmission T Fl in percent for a fiber optical setup as a function of diameter and distance of the retro-reflector array (focal length of telescope 150 cm , aperture 30 cm , parabolic mirror, fiber core diam eter 100 μm , fiber cladding diameter 130 μm ). Dashed–dotted and dotted lines: optimum reflector diameter for a coaxial setup of same focal length and main mirror diameter for a 200 μm diameter emitter (dashed–dotted) and 100 μm diameter emitter (dotted), respectively.

Fig. 20
Fig. 20

Variation of intensity as a function of defocusing along the optical axis for different setups. A relative position of zero means that the fiber bundle exit is exactly in the focus of the telescope mirror. The telescope mirror has a focal length of 60 cm and a diameter of 20 cm . The reflector array, consisting of 42 reflector elements, has a total diameter of 60 cm and is situated at a distance of 1511 m (data from [28]).

Fig. 21
Fig. 21

Modeled (blue solid line) and measured (black squares) intensity as a function of defocusing Δ x . The 30 cm diameter parabolic main mirror had a focal length of 150 cm . A bundle of six emitting fibers and one central receiving fiber was used (core diameter 100 μm , total diameter 130 μm ). Left ordinate axis: modeled transmission for a single emitting and a single receiving fiber (thick solid line). The measured transmission is shown in arbitrary units. An additional broadening of σ = 44 μm was introduced in the model to match the measured variation of intensity. The retro-reflector array consisting of 42 reflector elements ( 6 cm diameter each) was positioned at a distance of 1511 m and had a diameter of about 60 cm . Right ordinate axis: The thin solid line shows the function T R ( Δ x , D r ) , which describes the transmission at the reflector due to overfilling (experimental data from [28]).

Tables (5)

Tables Icon

Table 1 Optimal Offset in the Image Plane for Parabolic and Spherical Telescope Main Mirrors

Tables Icon

Table 2 Effect of Dislocation from the Optical Axis on Image Broadening for Two Different Fiber LP Telescope Configurations

Tables Icon

Table 3 Estimation of the Absolute Transmission and Comparison with Measurements, Distance to Reflector x = 1511 m , Reflector Array Diameter = 60 cm , Reflector Elements = 42

Tables Icon

Table 4 Comparison of a Fiber Setup with a Coaxial LP Setup: Telescope and Reflector Data

Tables Icon

Table 5 Intensity Reached in a Comparison of New Fiber Setup with Coaxial LP Setup a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d = ( g / f 1 ) v ,
d = tan ( Δ ϕ ) [ x g f x g ]
r 0 = 0.185 [ λ 2 0 L C n 2 ( x ) d x ] 3 / 5 .
r 0 , z ( L ) = 0.185 [ λ 2 L C n 2 ( z ) ] 3 / 5 .
r 0 , z ( L ) = r 0 , z ( L 0 ) [ L 0 L ] 3 / 5 .
T Fl ( Δ x , D R ) = T V ( Δ x ) T R ( Δ x , D R ) ,

Metrics