Abstract

Planar waveguides have been fabricated in Nd- or Ho-doped gallium lanthanum sulfide laser glasses by 60MeV Ar or 20MeV N ion implantation. The refractive index profiles were reconstructed based on the results of prism coupling. The Ar implanted waveguides exhibit an approximate steplike distribution, while the N implanted ones show a “well + barrier” type. This difference can be attributed to the much lower dose of Ar ions. After annealing, the N implanted waveguides can support two modes at 1539nm and have low propagation loss, which makes them candidates for novel waveguide lasers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
    [CrossRef]
  2. M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007).
    [CrossRef]
  3. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
    [CrossRef]
  4. J. A. Frantz, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Waveguide amplifiers in sputtered films of Er3+-doped gallium lanthanum sulfide glass,” Opt. Express 14, 1797–1803(2006).
    [CrossRef] [PubMed]
  5. T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
    [CrossRef]
  6. A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
    [CrossRef]
  7. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
    [CrossRef]
  8. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182(2008).
    [CrossRef]
  9. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
    [CrossRef]
  10. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
    [CrossRef]
  11. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
    [CrossRef] [PubMed]
  12. J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
    [CrossRef]
  13. F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33, 527–530 (2011).
    [CrossRef]
  14. F. Qiu and T. Narusawa, “Proton-implanted planar waveguide in gallium lanthanum sulphide glass,” Jpn. J. Appl. Phys. 49, 092503 (2010).
    [CrossRef]
  15. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
    [CrossRef]
  16. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” J. Mod. Opt. 33, 127–143(1986).
    [CrossRef]
  17. L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
    [CrossRef]
  18. M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
    [CrossRef]
  19. L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
    [CrossRef]
  20. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523–1542 (2007).
    [CrossRef]
  21. S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
    [CrossRef]
  22. F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
    [CrossRef]
  23. L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
    [CrossRef]
  24. M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002).
    [CrossRef]
  25. S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B 41, 12250–12259 (1990).
    [CrossRef]
  26. A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002).
    [CrossRef]

2011 (1)

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33, 527–530 (2011).
[CrossRef]

2010 (2)

F. Qiu and T. Narusawa, “Proton-implanted planar waveguide in gallium lanthanum sulphide glass,” Jpn. J. Appl. Phys. 49, 092503 (2010).
[CrossRef]

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

2009 (2)

L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

2008 (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182(2008).
[CrossRef]

2007 (6)

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
[CrossRef] [PubMed]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
[CrossRef]

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

2006 (1)

2005 (2)

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

2002 (5)

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

1999 (1)

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

1994 (1)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

1993 (1)

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

1990 (1)

S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B 41, 12250–12259 (1990).
[CrossRef]

1986 (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” J. Mod. Opt. 33, 127–143(1986).
[CrossRef]

1983 (1)

M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Aggarwal, I. D.

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

Agulló-Lópeza, F.

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

Alwahabi, Z. T.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Avasthi, D. K.

M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002).
[CrossRef]

Brocklesby, W. S.

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

Brown, E. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Caballero, O.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

Carrascosa, M.

Chandler, P. J.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” J. Mod. Opt. 33, 127–143(1986).
[CrossRef]

Chardon, A. M.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002).
[CrossRef]

Chen, F.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182(2008).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Crespillo, M. L.

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

Curry, R. J.

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Drexhave, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Ducharme, S.

S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B 41, 12250–12259 (1990).
[CrossRef]

Frantz, J. A.

Fu, G.

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

García, G.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

García-Cabañes, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

Hautala, J.

S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B 41, 12250–12259 (1990).
[CrossRef]

Hector, J. R.

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

Hewak, D.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Hewak, D. W.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002).
[CrossRef]

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

Hodgson, E.

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

Hu, L. L.

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

Hughes, M.

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Jiao, Y.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

Kamboj, M. S.

M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002).
[CrossRef]

Kaur, G.

M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” J. Mod. Opt. 33, 127–143(1986).
[CrossRef]

Li, S. L.

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

Li, X. S.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Lin, H.

L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[CrossRef]

Lu, Q. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Ma, H. J.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
[CrossRef]

Mairaj, A. K.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002).
[CrossRef]

Manzano, J.

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

McCaffery, A. J.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Méndez, A.

Moroño, A.

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

Narusawa, T.

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33, 527–530 (2011).
[CrossRef]

F. Qiu and T. Narusawa, “Proton-implanted planar waveguide in gallium lanthanum sulphide glass,” Jpn. J. Appl. Phys. 49, 092503 (2010).
[CrossRef]

Nie, R.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

Olivares, J.

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32, 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

Payne, D. N.

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

Pityana, S. L.

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Pun, E. Y. B.

L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[CrossRef]

Qiu, F.

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33, 527–530 (2011).
[CrossRef]

F. Qiu and T. Narusawa, “Proton-implanted planar waveguide in gallium lanthanum sulphide glass,” Jpn. J. Appl. Phys. 49, 092503 (2010).
[CrossRef]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

Riziotis, C.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

Rutt, H.

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Samsom, B. N.

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

Sanghera, J. S.

Schweizer, T.

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

Shaw, L. B.

Shen, D. U.

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Shen, D. Y.

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

Shepherd, D. P.

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

Shi, B. R.

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Smith, P. G. R.

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

Taylor, P. C.

S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B 41, 12250–12259 (1990).
[CrossRef]

Thangaraj, R.

M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002).
[CrossRef]

Townsend, P. D.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Wang, K. M.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Wang, L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

Wang, L. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

Wang, X. L.

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Yang, L.

L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[CrossRef]

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Zhang, L.

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

Appl. Phys. Lett. (5)

M. Hughes, H. Rutt, D. Hewak, and R. J. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

A. K. Mairaj, C. Riziotis, A. M. Chardon, P. G. R. Smith, D. P. Shepherd, and D. W. Hewak, “Development of channel waveguide lasers in Nd3+-doped chalcogenide (Ga:La:S) glass through photoinduced material modification,” Appl. Phys. Lett. 81, 3708–3710 (2002).
[CrossRef]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86, 183501(2005).
[CrossRef]

L. Yang, E. Y. B. Pun, and H. Lin, “Tm3+-doped ion-exchanged aluminum germanate glass waveguide for S-band amplification,” Appl. Phys. Lett. 95, 151106 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

F. Chen, X. L. Wang, X. S. Li, Q. M. Lu, K. M. Wang, B. R. Shi, and D. U. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass,” Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33, 165–182(2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13, 626–637 (2007).
[CrossRef]

A. K. Mairaj, A. M. Chardon, D. P. Shepherd, and D. W. Hewak, “Laser performance and spectroscopic analysis of optically written channel waveguides in neodymium-doped gallium lanthanum sulphide glass,” IEEE J. Sel. Top. Quantum Electron. 8, 1381–1388 (2002).
[CrossRef]

Infrared Phys. Technol. (1)

T. Schweizer, B. N. Samsom, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40, 329–335 (1999).
[CrossRef]

J. Appl. Phys. (3)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[CrossRef]

L. Zhang, P. J. Chandler, P. D. Townsend, Z. T. Alwahabi, S. L. Pityana, and A. J. McCaffery, “Frequency doubling in ion-implanted KTiOPO4 planar waveguides with 25% conversion efficiency,” J. Appl. Phys. 73, 2695–2699 (1993).
[CrossRef]

L. Wang, F. Chen, X. L. Wang, K. M. Wang, Y. Jiao, L. L. Wang, X. S. Li, Q. M. Lu, H. J. Ma, and R. Nie, “Low-loss planar and stripe waveguides in Nd3+-doped silicate glass produced by oxygen-ion implantation,” J. Appl. Phys. 101, 053112 (2007).
[CrossRef]

J. Mod. Opt. (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” J. Mod. Opt. 33, 127–143(1986).
[CrossRef]

J. Phys. D (2)

S. L. Li, K. M. Wang, F. Chen, X. L. Wang, G. Fu, Q. M. Lu, L. L. Hu, D. Y. Shen, and H. J. Ma, “Property studies of optical waveguide formed by 6.0 MeV carbon ion implantation into Nd:silicate glass,” J. Phys. D 38, 2899–2903 (2005).
[CrossRef]

M. S. Kamboj, G. Kaur, R. Thangaraj, and D. K. Avasthi, “Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films,” J. Phys. D 35, 477–479 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

F. Qiu and T. Narusawa, “Proton-implanted planar waveguide in gallium lanthanum sulphide glass,” Jpn. J. Appl. Phys. 49, 092503 (2010).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

J. Manzano, J. Olivares, F. Agulló-Lópeza, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (α-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268, 3147–3150 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (2)

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33, 527–530 (2011).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523–1542 (2007).
[CrossRef]

Phys. Rev. B (2)

S. Ducharme, J. Hautala, and P. C. Taylor, “Photodarkening profiles and kinetics in chalcogenide glasses,” Phys. Rev. B 41, 12250–12259 (1990).
[CrossRef]

M. D. Shinn, W. A. Sibley, M. G. Drexhave, and E. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. B 27, 6635–6648 (1983).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73, 1117–1120 (2002).
[CrossRef]

Other (1)

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

TE mode spectra of Ar implanted (a) Ho- and (b) Nd-doped waveguides at 632.8 nm .

Fig. 2
Fig. 2

(a) Simulated and (b) measured near-field patterns at the output plane of the Ho:GLS waveguide and the Nd:GLS waveguide [(c) simulated, (d) measured]. (e) Measured bright mode of TE 1 of the Ho:GLS waveguide.

Fig. 3
Fig. 3

Refractive index profiles of the Ar and N implanted waveguides at 632.8 nm : (a) Ho:GLS, (b) Nd:GLS.

Fig. 4
Fig. 4

TE mode spectra of the N implanted Ho-doped waveguide at (a)  632.8 nm and (b)  1539 nm .

Fig. 5
Fig. 5

TE mode spectra of the N implanted Nd-doped waveguide at (a)  632.8 nm and (b)  1539 nm .

Fig. 6
Fig. 6

Refractive index profiles of the N implanted waveguides at 1539 nm : (a) Ho:GLS, (b) Nd:GLS.

Fig. 7
Fig. 7

dE / dx e (squares) and dE / dx n (triangles) of 60 MeV Ar (red) and 20 MeV N (blue) ions in Ho:GLS glass.

Metrics