Abstract

We have developed and demonstrated a high-sensitivity trace gas instrument employing two mid- infrared quantum cascade lasers and an astigmatic Herriott sample cell with up to a 240m path length. Several aspects of astigmatic Herriott cell optics have been addressed to enable operation at a high pass number (up to 554), including aberrations and pattern selection to minimize interference fringes. The new instrument design, based on the 200m cell, can measure various atmospheric trace gases, depending on the installed lasers, with multiple trace gases measured simultaneously. Demonstrated concentration noise levels (1s average) are 40parts per trillion [(ppt) 1012] for formaldehyde, 10ppt for carbonyl sulfide, 110ppt for hydrogen peroxide (H2O2), and 180ppt for nitrous acid (HONO). High-precision measurements of nitrous oxide and methane have been recorded at the same time as high-sensitivity measurements of HONO and H2O2.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [CrossRef]
  2. F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).
  3. J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
    [CrossRef]
  4. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
    [CrossRef]
  5. C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
    [CrossRef]
  6. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
    [CrossRef] [PubMed]
  7. W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
    [CrossRef]
  8. A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
    [CrossRef] [PubMed]
  9. A. A. Kosterev, and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
    [CrossRef]
  10. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
    [CrossRef]
  11. J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002).
    [CrossRef]
  12. D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
    [CrossRef]
  13. R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
    [CrossRef]
  14. S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
    [CrossRef]
  15. P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
    [CrossRef]
  16. J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
    [CrossRef]
  17. D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
    [CrossRef]
  18. B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
    [CrossRef]
  19. J. B. McManus, D. D. Nelson, and M. S. Zahniser, “Long-term continuous sampling of CO212, CO213 and C12O18O16 in ambient air with a quantum cascade laser spectrometer,” Isotopes Environ. Health Stud. 46, 49–63 (2010).
    [CrossRef] [PubMed]
  20. M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
    [CrossRef]
  21. D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
    [CrossRef] [PubMed]
  22. J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
    [CrossRef]
  23. A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
    [CrossRef]
  24. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
    [CrossRef]
  25. Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
    [CrossRef]
  26. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202–8210 (2007).
    [CrossRef] [PubMed]
  27. K. Stimler, D. Nelson, and D. Yakir, “High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide (COS) using mid-IR quantum cascade laser,” Glob. Change Biol. 16, 2496–2503 (2010).
    [CrossRef]
  28. A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991).
    [CrossRef] [PubMed]
  29. G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040–6046 (2004).
    [CrossRef] [PubMed]
  30. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef] [PubMed]
  31. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
    [CrossRef]
  32. J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
    [CrossRef]
  33. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
    [CrossRef]
  34. C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
    [CrossRef]
  35. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
    [CrossRef] [PubMed]
  36. D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526(1964).
    [CrossRef]
  37. D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
    [CrossRef]
  38. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multiple pass absorption cells for long pathlength spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  39. J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
    [CrossRef] [PubMed]
  40. L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
    [CrossRef]
  41. J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt. 44, 6545–6556 (2005).
    [CrossRef] [PubMed]
  42. V. L. Kasyutich, “Laser beam patterns of an optical cavity formed by two twisted cylindrical mirrors,” Appl. Phys. B 96, 141–148 (2009).
    [CrossRef]
  43. J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).
  44. http://www.esrl.noaa.gov/calnex/index.htm.
  45. L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
    [CrossRef]
  46. P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [CrossRef]

2010 (3)

J. B. McManus, D. D. Nelson, and M. S. Zahniser, “Long-term continuous sampling of CO212, CO213 and C12O18O16 in ambient air with a quantum cascade laser spectrometer,” Isotopes Environ. Health Stud. 46, 49–63 (2010).
[CrossRef] [PubMed]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

K. Stimler, D. Nelson, and D. Yakir, “High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide (COS) using mid-IR quantum cascade laser,” Glob. Change Biol. 16, 2496–2503 (2010).
[CrossRef]

2009 (2)

V. L. Kasyutich, “Laser beam patterns of an optical cavity formed by two twisted cylindrical mirrors,” Appl. Phys. B 96, 141–148 (2009).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

2008 (5)

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

2007 (4)

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
[CrossRef] [PubMed]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202–8210 (2007).
[CrossRef] [PubMed]

2006 (3)

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

2005 (2)

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt. 44, 6545–6556 (2005).
[CrossRef] [PubMed]

2004 (3)

G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040–6046 (2004).
[CrossRef] [PubMed]

D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
[CrossRef]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

2003 (2)

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

2002 (9)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

A. A. Kosterev, and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002).
[CrossRef]

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

2001 (2)

2000 (1)

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

1998 (2)

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

1995 (1)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

1993 (1)

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

1991 (1)

1965 (1)

1964 (1)

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Allen, M. G.

Atlas, E.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Baillargeon, J. N.

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

Bakhirkin, Y.

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202–8210 (2007).
[CrossRef] [PubMed]

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Barbe, A.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Benner, D. Chris

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Blake, D.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Blake, N.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Blaser, S.

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

Bozem, H.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Brown, L. R.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Cantrell, C.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Carleer, M. R.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Chance, K.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Chase, R. E.

Cho, A. Y.

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Chu, P. M.

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

Chu, S. N. G.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

Clerbaux, C.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Coffey, M. T.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Curl, R. F.

Dana, V.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Daube, B.

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

Davies, P. B.

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

de Gouw, J. A.

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

Demerjian, K. L.

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

Devi, V. M.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Dibb, J.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Drummond, J. R.

Ehhalt, D.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Emmenegger, L.

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

Eugster, W.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

Faist, J.

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Fayt, A.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Feng, D.

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

Fisher, H.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Flesch, G. J.

Fox, J.

Fraser, M. P.

Fried, A.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991).
[CrossRef] [PubMed]

Gamache, R. R.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Gatilova, L.

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

Gini, E.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Giovannini, M.

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

Glenn, D. E.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

Goldman, A.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Gurk, C.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Hannigan, J.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Hao, L.-Y.

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

Harris, G. W.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Heikes, B.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Hempel, F.

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

Henry, B.

Herndon, S.

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
[CrossRef]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

Herndon, S. C.

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

Herriott, D. R.

Hill, C. J.

Hofstetter, D.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Hutchinson, A. L.

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Jacquemart, D.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Jimenez, R.

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

Jiménez, R.

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

Jucks, K. W.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Kasyutich, V. L.

V. L. Kasyutich, “Laser beam patterns of an optical cavity formed by two twisted cylindrical mirrors,” Appl. Phys. B 96, 141–148 (2009).
[CrossRef]

Kebabian, P. L.

Kogelnik, H.

Köhler, R.

Kompfner, R.

Königstedt, R.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

Lafferty, M. J.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Lang, N.

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

Lee, B.

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

Lefer, B.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Lelieveld, J.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Li, Y. Q.

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

Liu, H. C.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Mandin, J. Y.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Massie, S. T.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

May, R. D.

McCurdy, M.

McGovern, R. M.

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

McManus, J. B.

J. B. McManus, D. D. Nelson, and M. S. Zahniser, “Long-term continuous sampling of CO212, CO213 and C12O18O16 in ambient air with a quantum cascade laser spectrometer,” Isotopes Environ. Health Stud. 46, 49–63 (2010).
[CrossRef] [PubMed]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
[CrossRef] [PubMed]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
[CrossRef]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multiple pass absorption cells for long pathlength spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

Meinardi, S.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Mohn, J.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

Mucke, R.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Muller, A.

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

Nelson, D.

K. Stimler, D. Nelson, and D. Yakir, “High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide (COS) using mid-IR quantum cascade laser,” Glob. Change Biol. 16, 2496–2503 (2010).
[CrossRef]

Nelson, D. D.

J. B. McManus, D. D. Nelson, and M. S. Zahniser, “Long-term continuous sampling of CO212, CO213 and C12O18O16 in ambient air with a quantum cascade laser spectrometer,” Isotopes Environ. Health Stud. 46, 49–63 (2010).
[CrossRef] [PubMed]

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
[CrossRef]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

Nemtchinov, V.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Newnham, D. A.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Paiella, R.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

Parchatka, U.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Perrin, A.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Qi, L.

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

Qiang, S.

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

Remillard, J. T.

Richert, J. F.

Richter, D.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

Ridley, B.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Roller, C.

Röpcke, J.

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

Rothman, L. S.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Rousseau, A.

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

Santoni, G.

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

Scheuer, E.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Schiller, C. L.

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

Schroeder, J.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Schulte, H. J.

Scott, D. C.

Shetter, R.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Shi, Q.

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

Shorter, J. H.

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002).
[CrossRef]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

Silver, J. A.

Sirtori, C.

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

W. H. Weber, J. T. Remillard, R. E. Chase, J. F. Richert, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Using a wavelength-modulated quantum cascade laser to measure NO concentrations in the parts-per-billion range for vehicle emissions certification,” Appl. Spectrosc. 56, 706–714 (2002).
[CrossRef]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

Slemr, F.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Smith, K. M.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Snow, J.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

So, S.

Stimler, K.

K. Stimler, D. Nelson, and D. Yakir, “High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide (COS) using mid-IR quantum cascade laser,” Glob. Change Biol. 16, 2496–2503 (2010).
[CrossRef]

Swanson, J. E.

Talbot, B.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Tang, K.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202–8210 (2007).
[CrossRef] [PubMed]

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040–6046 (2004).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

Toth, R. A.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Travis, J. C.

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

Tredicucci, A.

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

Tuzson, B.

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

Urbanski, S.

D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
[CrossRef]

Vander Auwera, J.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Varanasi, P.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Walega, J.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Walega, J. G.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

Wang, Y.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Warneke, C.

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

Weber, W. H.

Webster, C. R.

Wehe, S.

Wehr, Rick

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

Weidmann, D.

Welzel, S.

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

Werle, P.

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Werner, R. A.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

Wert, B.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Wert, B. P.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

Wingenter, O.

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

Wood, E.

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

Woodward, W. S.

Wu, G.-R.

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202–8210 (2007).
[CrossRef] [PubMed]

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040–6046 (2004).
[CrossRef] [PubMed]

Yakir, D.

K. Stimler, D. Nelson, and D. Yakir, “High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide (COS) using mid-IR quantum cascade laser,” Glob. Change Biol. 16, 2496–2503 (2010).
[CrossRef]

Yang, R. Q.

Yoshino, K.

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Zahniser, M. S.

J. B. McManus, D. D. Nelson, and M. S. Zahniser, “Long-term continuous sampling of CO212, CO213 and C12O18O16 in ambient air with a quantum cascade laser spectrometer,” Isotopes Environ. Health Stud. 46, 49–63 (2010).
[CrossRef] [PubMed]

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Characterization of a near-room temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere,” Opt. Lett. 31, 2012–2014 (2006).
[CrossRef] [PubMed]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
[CrossRef]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multiple pass absorption cells for long pathlength spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

Zeeman, M. J.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

Zhu, Q.-S.

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

Appl. Opt. (11)

D. R. Herriott, H. Kogelnik, and R. Kompfner, “Off axis paths in spherical mirror interferometers,” Appl. Opt. 3, 523–526(1964).
[CrossRef]

D. R. Herriott and H. J. Schulte, “Folded optical delay lines,” Appl. Opt. 4, 883–889 (1965).
[CrossRef]

A. Fried, J. R. Drummond, B. Henry, and J. Fox, “Versatile integrated tunable diode laser system for high precision: application for ambient measurements of OCS,” Appl. Opt. 30, 1916–1932 (1991).
[CrossRef] [PubMed]

J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multiple pass absorption cells for long pathlength spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
[CrossRef] [PubMed]

C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Transported automated ammonia sensor based on a pulsed thermoelectrically cooled QC-DFB laser,” Appl. Opt. 41, 573–578 (2002).
[CrossRef] [PubMed]

A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically cooled quantum-cascade laser-based sensor for the continuous monitoring of ambient atmospheric carbon monoxide,” Appl. Opt. 41, 1169–1173 (2002).
[CrossRef] [PubMed]

G. Wysocki, M. McCurdy, S. So, D. Weidmann, C. Roller, R. F. Curl, and F. K. Tittel, “Pulsed quantum-cascade laser-based sensor for trace-gas detection of carbonyl sulfide,” Appl. Opt. 43, 6040–6046 (2004).
[CrossRef] [PubMed]

J. A. Silver, “Simple dense-pattern optical multipass cells,” Appl. Opt. 44, 6545–6556 (2005).
[CrossRef] [PubMed]

J. B. McManus, “Paraxial matrix description of astigmatic and cylindrical mirror resonators with twisted axes for laser spectroscopy,” Appl. Opt. 46, 472–482 (2007).
[CrossRef] [PubMed]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202–8210 (2007).
[CrossRef] [PubMed]

Appl. Phys. B (10)

P. Werle, R. Mucke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

C. L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G. W. Harris, J. Lelieveld, and H. Fisher, “Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O, and HCHO,” Appl. Phys. B 92, 419–430(2008).
[CrossRef]

V. L. Kasyutich, “Laser beam patterns of an optical cavity formed by two twisted cylindrical mirrors,” Appl. Phys. B 96, 141–148 (2009).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B 75, 343–350 (2002).
[CrossRef]

J. B. McManus, J. H. Shorter, D. D. Nelson, M. S. Zahniser, D. E. Glenn, and R. M. McGovern, “Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air,” Appl. Phys. B 92, 387–392 (2008).
[CrossRef]

D. D. Nelson, J. B. McManus, S. C. Herndon, M. S. Zahniser, B. Tuzson, and L. Emmenegger, “New method for isotopic ratio measurements of atmospheric carbon dioxide using a 4.3 µm pulsed quantum cascade laser,” Appl. Phys. B 90, 301–309 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and Δ18O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 90, 415–458 (2008).
[CrossRef]

J. Röpcke, S. Welzel, N. Lang, F. Hempel, L. Gatilova, A. Rousseau, and P. B. Davies, “Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers,” Appl. Phys. B 92, 335–341 (2008).
[CrossRef]

J. B. McManus, D. D. Nelson, S. C. Herndon, J. H. Shorter, M. S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, and J. Faist, “Comparison of CW and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1,” Appl. Phys. B 85, 235–241 (2006).
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference-frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, “Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at ∼8.5 μm,” Appl. Phys. Lett. 72, 1430–1432 (1998).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, J. B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Glob. Change Biol. (1)

K. Stimler, D. Nelson, and D. Yakir, “High precision measurements of atmospheric concentrations and plant exchange rates of carbonyl sulfide (COS) using mid-IR quantum cascade laser,” Glob. Change Biol. 16, 2496–2503 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Faist, A. Tredicucci, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “High-power continuous-wave quantum cascade lasers,” IEEE J. Quantum Electron. 34, 336–343 (1998).
[CrossRef]

A. A. Kosterev, and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, “New frontiers in quantum cascade lasers and applications,” IEEE J. Sel. Top. Quantum Electron. 6, 931–947 (2000).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

P. M. Chu, D. D. Nelson, M. S. Zahniser, J. B. McManus, Q. Shi, and J. C. Travis, “Towards realization of reactive gas amount of substance standards through spectroscopic measurements,” IEEE Trans. Instrum. Meas. 56, 305–308 (2007).
[CrossRef]

Isotopes Environ. Health Stud. (1)

J. B. McManus, D. D. Nelson, and M. S. Zahniser, “Long-term continuous sampling of CO212, CO213 and C12O18O16 in ambient air with a quantum cascade laser spectrometer,” Isotopes Environ. Health Stud. 46, 49–63 (2010).
[CrossRef] [PubMed]

J. Geophys. Res. (3)

S. C. Herndon, M. S. Zahniser, D. D. Nelson, J. H. Shorter, J. B. McManus, R. Jiménez, C. Warneke, and J. A. de Gouw, “Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer,” J. Geophys. Res. 112, D10S03(2007).
[CrossRef]

Y. Q. Li, K. L. Demerjian, M. S. Zahniser, D. D. Nelson, J. B. McManus, and S. C. Herndon, “Measurement of formaldehyde, nitrogen dioxide, and sulfur dioxide at Whiteface Mountain using a dual tunable diode laser system,” J. Geophys. Res. 109, D16S08 (2004).
[CrossRef]

A. Fried, Y. Wang, C. Cantrell, B. Wert, J. Walega, B. Ridley, E. Atlas, R. Shetter, B. Lefer, M. T. Coffey, J. Hannigan, D. Blake, N. Blake, S. Meinardi, B. Talbot, J. Dibb, E. Scheuer, O. Wingenter, J. Snow, B. Heikes, and D. Ehhalt, “Tunable diode laser measurements of formaldehyde during the TOPSE 2000: distributions, trends, and model comparisons,” J. Geophys. Res. 108, 8365–8386 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, M. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 with updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44(2003).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (3)

M. S. Zahniser, D. D. Nelson, J. B. McManus, S. Herndon, E. Wood, J. H. Shorter, B. Lee, G. Santoni, R. Jimenez, and B. Daube, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H (2009).
[CrossRef]

R. Jimenez, S. Herndon, J. H. Shorter, D. D. Nelson, J. B. McManus, and M. S. Zahniser, “Atmospheric trace gas measurements using a dual quantum-cascade laser mid-infrared absorption spectrometer,” Proc. SPIE 5738, 318–330(2005).
[CrossRef]

J. B. McManus, D. D. Nelson, J. H. Shorter, and M. S. Zahniser, “Quantum cascade lasers for open- and closed-path measurement of atmospheric trace gases,” Proc. SPIE 4817, 22–33(2002).
[CrossRef]

Rep. Prog. Phys. (1)

C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Recent progress in quantum cascade lasers and applications,” Rep. Prog. Phys. 64, 1533–1601 (2001).
[CrossRef]

Rev. Laser Eng. (1)

F. K. Tittel, Y. Bakhirkin, A. A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Rev. Sci. Instrum. (1)

L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, and Q.-S. Zhu, “Cylindrical mirror multipass Lissajous system for laser photoacoustic spectroscopy,” Rev. Sci. Instrum. 73, 2079–3085(2002).
[CrossRef]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
[CrossRef] [PubMed]

Spectrochim. Acta A (1)

D. D. Nelson, J. B. McManus, S. Urbanski, S. Herndon, and M. S. Zahniser, “High precision measurements of atmospheric nitrous oxide and methane using thermoelectrically cooled mid-infrared quantum cascade lasers and detectors,” Spectrochim. Acta A 60, 3325–3335 (2004).
[CrossRef]

Other (2)

J. B. McManus, M. S. Zahniser, D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and Rick Wehr, “Application of QCL’s to high precision atmospheric trace gas measurements,” Opt. Eng. (to be published).

http://www.esrl.noaa.gov/calnex/index.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Geometry of the cell mirror, with pattern boundaries indicated in a dotted circle. The circulation pattern is represented only by the outermost spots (large dots) and innermost spots (small dots). The input/output beam spots at the center of the mirror are not shown.

Fig. 2
Fig. 2

Computed spot distortion due to aberration in the cell. The input spot at the back of the cell is shown at the upper right in both panels, and the spot that returns to the origin is at the lower left.

Fig. 3
Fig. 3

Patterns with good hole spacing throughout the available solution space are plotted as black points. The solution space is represented with the range from 0 to 1 in two dimensions. The patterns available with mirrors with 9% astigmatism are between the two gray diagonal curves.

Fig. 4
Fig. 4

The same patterns as in Fig. 3 are plotted with color according to the closest spot separation at a given pass number difference.

Fig. 5
Fig. 5

Map of pattern locations as a function of mirror spacing and twist for a range of setup conditions close to several candidate patterns. The map is calculated using nonparaxial ray tracing with a single ray at a finite angle. The map shows nearly circular zones, each representing the location of a different pattern. The pass number is indicated by color. The error in the return location of the final ray is indicated by the darkened tone at the edge of each zone. The patterns with the beam exiting in the wrong direction (incomplete patterns) are indicated with a grayer color.

Fig. 6
Fig. 6

(a) Calculated and (b) observed mirror spots for the pattern { 434 , 174 , 166 } .

Fig. 7
Fig. 7

Diagram of the optical module for our new instrument.

Fig. 8
Fig. 8

Average power spectrum derived from spectra recorded with the dual-laser instrument where the cell was set to 422 passes. Generating lengths corresponding to even multiples of the cell base length are indicated by triangles. Here, the only clear cell fringe is at 10 passes.

Fig. 9
Fig. 9

Average power spectrum derived from spectra recorded with the dual-laser instrument where the cell was set to 434 passes. Generating lengths corresponding to even multiples of the cell base length are indicated by triangles. Here, there are clear cell fringes at 2, 4, 6, and 10 passes. This may be a case where the alignment into the cell is poor.

Fig. 10
Fig. 10

Average power spectrum derived from spectra recorded with the dual-laser instrument where the cell was set to 554 passes. Generating lengths corresponding to even multiples of the cell base length are indicated by triangles. Here, there are clear cell fringes at 6 and 10 passes. The peak close to 2 passes is at 100 cm and involves the optical train outside the cell.

Fig. 11
Fig. 11

Allan variance plot for HCHO measured with the dual-laser instrument aboard the research ship Atlantis during the CALNEX experiment.

Fig. 12
Fig. 12

Allan variance plot for HONO measured in the laboratory, in a sample with a near-zero concentration.

Tables (3)

Tables Icon

Table 1 Identification of Several Candidate High Pass Number Patterns

Tables Icon

Table 2 Overlap Strengths Versus Pass Number Difference a

Tables Icon

Table 3 Summary of Noise Results for the Dual Laser Instrument with 200 m Cell a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

X n = A x sin ( n θ x ) , Y n = A y sin ( n θ y ) ,
θ x = π N / M x , θ y = π N / M y ,
R pin = R pout π / N p ,
N p = ( R pout π / R pin ) 2 .
I = ± exp ( [ ( ν ν o ) / ω ] 2 ) A sin ( 2 π ν / F s + φ ) d ν = A 2 1 / 2 sin ( φ ) exp ( ( π ω / F s ) 2 ) .
R min ( Δ : N , M x , M y ) = Min { ( X n + Δ X n ) } Min { sin ( ( n + Δ ) 4 π K / Δ ) sin ( ( n 4 π K / Δ ) } ,
sin ( ( n + Δ ) 4 π K / Δ ) sin ( ( n 4 π K / Δ ) = 2 cos [ ( 2 n + Δ ) 2 π K / Δ ] sin ( 2 π K ) = 0.
x = ( 2 J + 1 ) / Δ , y = ( 2 K + 1 ) / Δ ,

Metrics