Abstract

We report the development and application of a simple theoretical model for extracting temperatures from picosecond-laser-based coherent anti-Stokes Raman scattering (CARS) spectra of H2 obtained using time-delayed probe pulses. This approach addresses the challenges associated with the effects of rotational-level-dependent decay lifetimes on time-delayed probing for CARS thermometry. A simple procedure is presented for accurate temperature determination based on a Boltzmann distribution using delayed-probe-pulse vibrational CARS spectra of H2; this procedure requires measurement at only a select handful of probe-pulse delays and requires no assumptions about sample environment.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
    [CrossRef]
  2. S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
    [CrossRef]
  3. S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224 (2005).
    [CrossRef] [PubMed]
  4. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
    [CrossRef] [PubMed]
  5. T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
    [CrossRef] [PubMed]
  6. T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010).
    [CrossRef] [PubMed]
  7. V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40bar,” Appl. Phys. B 61, 49–57 (1995).
    [CrossRef]
  8. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
    [CrossRef]
  9. K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
    [CrossRef]
  10. F. Grisch, P. Bouchardy, and W. Clauss, “CARS thermometry in high pressure rocket combustors,” Aerosp. Sci. Technol. 7, 317–330 (2003).
    [CrossRef]
  11. W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
    [CrossRef]
  12. J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
    [CrossRef] [PubMed]
  13. B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
    [CrossRef]
  14. T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310, 65–72 (1999).
    [CrossRef]
  15. T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001).
    [CrossRef]
  16. H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002).
    [CrossRef]
  17. H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
    [CrossRef] [PubMed]
  18. R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
    [CrossRef]
  19. J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
    [CrossRef]
  20. S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008).
    [CrossRef]
  21. H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
    [CrossRef] [PubMed]
  22. S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
    [CrossRef]
  23. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  24. S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
    [CrossRef]
  25. L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0–5) Raman transitions from 295 to 1000K,” Phys. Rev. A 43, 6075–6088 (1991).
    [CrossRef] [PubMed]
  26. W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
    [CrossRef]
  27. V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
    [CrossRef]
  28. K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
    [CrossRef]
  29. J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
    [CrossRef]
  30. J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).
  31. T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
    [CrossRef] [PubMed]
  32. D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, 2002).
  33. R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” SAND89-8206 (Sandia National Laboratories, 1989).
  34. M. Marrocco, “Comparative analysis of Herman–Wallis factors for uses in coherent anti-Stokes Raman spectra of light molecules,” J. Raman Spectrosc. 40, 741–747 (2009).
    [CrossRef]
  35. M. Marrocco, “Herman–Wallis factor to improve thermometric accuracy of vibrational coherent anti-Stokes Raman spectra of H2,” Proc. Combust. Inst. 32, 863–870 (2009).
    [CrossRef]
  36. J. C. Luthe, E. J. Beiting, and F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92(1986).
    [CrossRef]
  37. J. L. Dunham, “The energy levels of a rotating vibrator,” Phys. Rev. 41, 721–731 (1932).
    [CrossRef]
  38. G. Herzberg and L. L. Howe, “The Lyman bands of molecular hydrogen,” Can. J. Phys. 37, 636–659 (1959).
    [CrossRef]
  39. I. Tobias and J. T. Vanderslice, “Potential energy curves for the X1∑g+ and B1∑u+ states of hydrogen,” J. Chem. Phys. 35, 1852–1855 (1961).
    [CrossRef]
  40. L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
    [CrossRef]
  41. S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
    [CrossRef] [PubMed]

2010 (5)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

T. Seeger, J. Kiefer, Y. Gao, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Suppression of Raman-resonant interferences in rotational coherent anti-Stokes Raman spectroscopy using time-delayed picosecond probe pulses,” Opt. Lett. 35, 2040–2042 (2010).
[CrossRef] [PubMed]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
[CrossRef] [PubMed]

2009 (6)

T. Seeger, J. Kiefer, A. Leipertz, B. D. Patterson, C. J. Kliewer, and T. B. Settersten, “Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry,” Opt. Lett. 34, 3755–3757 (2009).
[CrossRef] [PubMed]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[CrossRef] [PubMed]

M. Marrocco, “Comparative analysis of Herman–Wallis factors for uses in coherent anti-Stokes Raman spectra of light molecules,” J. Raman Spectrosc. 40, 741–747 (2009).
[CrossRef]

M. Marrocco, “Herman–Wallis factor to improve thermometric accuracy of vibrational coherent anti-Stokes Raman spectra of H2,” Proc. Combust. Inst. 32, 863–870 (2009).
[CrossRef]

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

2008 (3)

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008).
[CrossRef]

2007 (2)

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
[CrossRef] [PubMed]

2006 (2)

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

2005 (4)

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

2003 (1)

F. Grisch, P. Bouchardy, and W. Clauss, “CARS thermometry in high pressure rocket combustors,” Aerosp. Sci. Technol. 7, 317–330 (2003).
[CrossRef]

2002 (3)

H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002).
[CrossRef]

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
[CrossRef]

2001 (3)

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001).
[CrossRef]

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

2000 (1)

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

1999 (1)

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310, 65–72 (1999).
[CrossRef]

1997 (1)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

1995 (1)

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40bar,” Appl. Phys. B 61, 49–57 (1995).
[CrossRef]

1991 (1)

L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0–5) Raman transitions from 295 to 1000K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

1986 (2)

J. C. Luthe, E. J. Beiting, and F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92(1986).
[CrossRef]

L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
[CrossRef]

1961 (1)

I. Tobias and J. T. Vanderslice, “Potential energy curves for the X1∑g+ and B1∑u+ states of hydrogen,” J. Chem. Phys. 35, 1852–1855 (1961).
[CrossRef]

1959 (1)

G. Herzberg and L. L. Howe, “The Lyman bands of molecular hydrogen,” Can. J. Phys. 37, 636–659 (1959).
[CrossRef]

1932 (1)

J. L. Dunham, “The energy levels of a rotating vibrator,” Phys. Rev. 41, 721–731 (1932).
[CrossRef]

Anderson, T. N.

Beaud, P.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001).
[CrossRef]

Beiting, E. J.

J. C. Luthe, E. J. Beiting, and F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92(1986).
[CrossRef]

Berger, H.

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Bergmann, V.

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40bar,” Appl. Phys. B 61, 49–57 (1995).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Bonamy, J.

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Bonamy, L.

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

Bouchardy, P.

F. Grisch, P. Bouchardy, and W. Clauss, “CARS thermometry in high pressure rocket combustors,” Aerosp. Sci. Technol. 7, 317–330 (2003).
[CrossRef]

Bruet, X.

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Buckup, T.

H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002).
[CrossRef]

Chakraborty, A.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Chaussard, F.

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

Clauss, W.

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

F. Grisch, P. Bouchardy, and W. Clauss, “CARS thermometry in high pressure rocket combustors,” Aerosp. Sci. Technol. 7, 317–330 (2003).
[CrossRef]

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Dunham, J. L.

J. L. Dunham, “The energy levels of a rotating vibrator,” Phys. Rev. 41, 721–731 (1932).
[CrossRef]

Fabelinsky, V. I.

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Farrow, R. L.

L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0–5) Raman transitions from 295 to 1000K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

Faucher, O.

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

Frey, H. M.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001).
[CrossRef]

Gabard, T.

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Gao, Y.

Glumac, N. G.

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
[CrossRef]

Gord, J. R.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
[CrossRef] [PubMed]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[CrossRef] [PubMed]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224 (2005).
[CrossRef] [PubMed]

Grisch, F.

F. Grisch, P. Bouchardy, and W. Clauss, “CARS thermometry in high pressure rocket combustors,” Aerosp. Sci. Technol. 7, 317–330 (2003).
[CrossRef]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Herzberg, G.

G. Herzberg and L. L. Howe, “The Lyman bands of molecular hydrogen,” Can. J. Phys. 37, 636–659 (1959).
[CrossRef]

Howe, L. L.

G. Herzberg and L. L. Howe, “The Lyman bands of molecular hydrogen,” Can. J. Phys. 37, 636–659 (1959).
[CrossRef]

Hsu, P. S.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

Hu, T. L.

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
[CrossRef]

Hussong, J.

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Ivanov, V. V.

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Joubert, P.

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Katta, V. R.

Kiefer, J.

Kinnius, P. J.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008).
[CrossRef]

Kliewer, C. J.

Klimenko, D. N.

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

Kompa, K. L.

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310, 65–72 (1999).
[CrossRef]

Kulatilaka, W. D.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[CrossRef] [PubMed]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
[CrossRef]

Lang, T.

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001).
[CrossRef]

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310, 65–72 (1999).
[CrossRef]

Lavorel, B.

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

Le Cong, N.

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

Leipertz, A.

Long, D. A.

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, 2002).

Lucht, R. P.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[CrossRef] [PubMed]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[CrossRef] [PubMed]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
[CrossRef]

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Lückerath, R.

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

Luthe, J. C.

J. C. Luthe, E. J. Beiting, and F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92(1986).
[CrossRef]

Marrocco, M.

M. Marrocco, “Comparative analysis of Herman–Wallis factors for uses in coherent anti-Stokes Raman spectra of light molecules,” J. Raman Spectrosc. 40, 741–747 (2009).
[CrossRef]

M. Marrocco, “Herman–Wallis factor to improve thermometric accuracy of vibrational coherent anti-Stokes Raman spectra of H2,” Proc. Combust. Inst. 32, 863–870 (2009).
[CrossRef]

Meyer, T. R.

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224 (2005).
[CrossRef] [PubMed]

Michaut, X.

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Miller, J. D.

Motzkus, M.

H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001).
[CrossRef]

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310, 65–72 (1999).
[CrossRef]

Oschwald, M.

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Palmer, R. E.

L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
[CrossRef]

R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” SAND89-8206 (Sandia National Laboratories, 1989).

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

Patterson, B. D.

Prince, B. D.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Prince, B. M.

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Rahn, L. A.

L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0–5) Raman transitions from 295 to 1000K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

L. A. Rahn and R. E. Palmer, “Studies of nitrogen self-broadening at high temperature with inverse Raman spectroscopy,” J. Opt. Soc. Am. B 3, 1164–1169 (1986).
[CrossRef]

Renard, V.

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

Richardson, D.

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

Richardson, D. R.

Robert, D.

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

Rosasco, G. J.

L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0–5) Raman transitions from 295 to 1000K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

Roy, S.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

S. Roy, W. D. Kulatilaka, D. R. Richardson, R. P. Lucht, and J. R. Gord, “Gas-phase single-shot thermometry at 1kHz using fs-CARS spectroscopy,” Opt. Lett. 34, 3857–3859 (2009).
[CrossRef] [PubMed]

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008).
[CrossRef]

T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
[CrossRef] [PubMed]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

T. R. Meyer, S. Roy, T. N. Anderson, J. D. Miller, V. R. Katta, R. P. Lucht, and J. R. Gord, “Measurements of OH mole fraction and temperature up to 20kHz by using a diode-laser-based UV absorption sensor,” Appl. Opt. 44, 6729–6740 (2005).
[CrossRef] [PubMed]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Broadband coherent anti-Stokes Raman scattering spectroscopy of nitrogen using a picosecond modeless dye laser,” Opt. Lett. 30, 3222–3224 (2005).
[CrossRef] [PubMed]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
[CrossRef]

Sabelnikov, V. A.

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Seeger, T.

Settersten, T. B.

Sinardet, B.

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

Skenderovic, H.

H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002).
[CrossRef]

Slipchenko, M. N.

Smirnov, V. V.

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Stauffer, H. U.

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

J. D. Miller, M. N. Slipchenko, T. R. Meyer, H. U. Stauffer, and J. R. Gord, “Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry,” Opt. Lett. 35, 2430–2432 (2010).
[CrossRef] [PubMed]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

Stel’makh, O. M.

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

Stelmakh, O. M.

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Stricker, W.

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40bar,” Appl. Phys. B 61, 49–57 (1995).
[CrossRef]

Tobias, I.

I. Tobias and J. T. Vanderslice, “Potential energy curves for the X1∑g+ and B1∑u+ states of hydrogen,” J. Chem. Phys. 35, 1852–1855 (1961).
[CrossRef]

Tran, H.

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

Vanderslice, J. T.

I. Tobias and J. T. Vanderslice, “Potential energy curves for the X1∑g+ and B1∑u+ states of hydrogen,” J. Chem. Phys. 35, 1852–1855 (1961).
[CrossRef]

Vereschagin, A. K.

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

Vereschagin, K. A.

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

Wohlleben, W.

H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002).
[CrossRef]

Yueh, F. Y.

J. C. Luthe, E. J. Beiting, and F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92(1986).
[CrossRef]

Aerosp. Sci. Technol. (2)

K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, V. I. Fabelinsky, V. A. Sabelnikov, V. V. Ivanov, W. Clauss, and M. Oschwald, “Temperature measurements by coherent anti-Stokes Raman spectroscopy in hydrogen-fuelled scramjet combustor,” Aerosp. Sci. Technol. 5, 347–355 (2001).
[CrossRef]

F. Grisch, P. Bouchardy, and W. Clauss, “CARS thermometry in high pressure rocket combustors,” Aerosp. Sci. Technol. 7, 317–330 (2003).
[CrossRef]

Annu. Rev. Anal. Chem. (1)

J. R. Gord, T. R. Meyer, and S. Roy, “Applications of Ultrafast Lasers for Optical Measurements in Combusting Flows,” Annu. Rev. Anal. Chem. 1, 663–687 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

J. Hussong, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, D. Robert, X. Michaut, T. Gabard, and H. Berger, “Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models,” Appl. Phys. B 70, 447–454 (2000).
[CrossRef]

J. Hussong, R. Lückerath, W. Stricker, X. Bruet, P. Joubert, J. Bonamy, and D. Robert, “Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference,” Appl. Phys. B 73, 165–172 (2001).

V. Bergmann and W. Stricker, “H2 CARS thermometry in a fuel-rich, premixed, laminar CH4/air flame in the pressure range between 5 and 40bar,” Appl. Phys. B 61, 49–57 (1995).
[CrossRef]

Appl. Phys. Lett. (4)

W. D. Kulatilaka, P. S. Hsu, H. U. Stauffer, J. R. Gord, and S. Roy, “Direct measurement of rotationally resolved H2Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering,” Appl. Phys. Lett. 97, 081112 (2010).
[CrossRef]

S. Roy, D. Richardson, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Effects of N2-CO polarization beating on femtosecond coherent anti-Stokes Raman scattering spectroscopy of N2,” Appl. Phys. Lett. 94, 144101 (2009).
[CrossRef]

R. P. Lucht, S. Roy, T. R. Meyer, and J. R. Gord, “Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence,” Appl. Phys. Lett. 89, 251112 (2006).
[CrossRef]

S. Roy, T. R. Meyer, and J. R. Gord, “Time-resolved dynamics of resonant and nonresonant broadband picosecond coherent anti-Stokes Raman scattering signals,” Appl. Phys. Lett. 87, 264103 (2005).
[CrossRef]

Appl. Spectrosc. (1)

Can. J. Phys. (1)

G. Herzberg and L. L. Howe, “The Lyman bands of molecular hydrogen,” Can. J. Phys. 37, 636–659 (1959).
[CrossRef]

Chem. Phys. Lett. (1)

T. Lang, K. L. Kompa, and M. Motzkus, “Femtosecond CARS on H2,” Chem. Phys. Lett. 310, 65–72 (1999).
[CrossRef]

Combust. Flame (2)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

S. Roy, W. D. Kulatilaka, R. P. Lucht, N. G. Glumac, and T. L. Hu, “Temperature profile measurements in the near-substrate region of low-pressure diamond-forming flames,” Combust. Flame 130, 261–276 (2002).
[CrossRef]

Comput. Phys. Commun. (1)

J. C. Luthe, E. J. Beiting, and F. Y. Yueh, “Algorithms for calculating coherent anti-Stokes Raman spectra: application to several small molecules,” Comput. Phys. Commun. 42, 73–92(1986).
[CrossRef]

Exp. Fluids (1)

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

J. Chem. Phys. (5)

I. Tobias and J. T. Vanderslice, “Potential energy curves for the X1∑g+ and B1∑u+ states of hydrogen,” J. Chem. Phys. 35, 1852–1855 (1961).
[CrossRef]

T. Lang, M. Motzkus, H. M. Frey, and P. Beaud, “High resolution femtosecond coherent anti-Stokes Raman scattering: determination of rotational constants, molecular anharmonicity, collisional line shifts, and temperature,” J. Chem. Phys. 115, 5418–5426 (2001).
[CrossRef]

B. D. Prince, A. Chakraborty, B. M. Prince, and H. U. Stauffer, “Development of simultaneous frequency- and time-resolved coherent anti-Stokes Raman scattering for ultrafast detection of molecular Raman spectra,” J. Chem. Phys. 125, 044502(2006).
[CrossRef]

H. Tran, P. Joubert, L. Bonamy, B. Lavorel, V. Renard, F. Chaussard, O. Faucher, and B. Sinardet, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy: experiment and modelization of speed memory effects on H2-N2 mixtures in the collision regime,” J. Chem. Phys. 122, 194317(2005).
[CrossRef] [PubMed]

H. Tran, F. Chaussard, N. Le Cong, B. Lavorel, O. Faucher, and P. Joubert, “Femtosecond time resolved coherent anti-Stokes Raman spectroscopy of H2-N2 mixtures in the Dicke regime: experiments and modeling of velocity effects,” J. Chem. Phys. 131, 174310 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (5)

M. Marrocco, “Comparative analysis of Herman–Wallis factors for uses in coherent anti-Stokes Raman spectra of light molecules,” J. Raman Spectrosc. 40, 741–747 (2009).
[CrossRef]

H. Skenderović, T. Buckup, W. Wohlleben, and M. Motzkus, “Determination of collisional line broadening coefficients with femtosecond time-resolved CARS,” J. Raman Spectrosc. 33, 866–871 (2002).
[CrossRef]

W. Clauss, D. N. Klimenko, M. Oschwald, K. A. Vereschagin, V. V. Smirnov, O. M. Stelmakh, and V. I. Fabelinsky, “CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner,” J. Raman Spectrosc. 33, 906–911 (2002).
[CrossRef]

V. I. Fabelinsky, V. V. Smirnov, O. M. Stel’makh, K. A. Vereschagin, A. K. Vereschagin, W. Clauss, and M. Oschwald, “New approach to single-shot CARS thermometry of high-pressure, high-temperature hydrocarbon flames,” J. Raman Spectrosc. 38, 989–993 (2007).
[CrossRef]

K. A. Vereschagin, A. K. Vereschagin, V. V. Smirnov, O. M. Stel’makh, V. I. Fabelinsky, W. Clauss, and M. Oschwald, “Coherent anti-stokes Raman spectroscopy investigation of collisional broadening of the hydrogen Q-branch transitions by water at high temperatures,” J. Raman Spectrosc. 39, 722–725 (2008).
[CrossRef]

Opt. Commun. (1)

S. Roy, P. J. Kinnius, R. P. Lucht, and J. R. Gord, “Temperature measurements in reacting flows by time-resolved femtosecond coherent anti-Stokes Raman scattering (fs-CARS) spectroscopy,” Opt. Commun. 281, 319–325 (2008).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

J. L. Dunham, “The energy levels of a rotating vibrator,” Phys. Rev. 41, 721–731 (1932).
[CrossRef]

Phys. Rev. A (1)

L. A. Rahn, R. L. Farrow, and G. J. Rosasco, “Measurement of the self-broadening of the H2Q(0–5) Raman transitions from 295 to 1000K,” Phys. Rev. A 43, 6075–6088 (1991).
[CrossRef] [PubMed]

Proc. Combust. Inst. (1)

M. Marrocco, “Herman–Wallis factor to improve thermometric accuracy of vibrational coherent anti-Stokes Raman spectra of H2,” Proc. Combust. Inst. 32, 863–870 (2009).
[CrossRef]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
[CrossRef]

Other (2)

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, 2002).

R. E. Palmer, “The CARSFT computer code for calculating coherent anti-Stokes Raman spectra: user and programmer information,” SAND89-8206 (Sandia National Laboratories, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Temperatures extracted from simple PDI Boltzmann fits to observed room-temperature H 2 vibrational ps-CARS spectra, as described in the text, at pressures of 1, 5, and 10 bars . In these examples, differing decay lifetimes were ignored, resulting in a diminishment of the extracted temperature at high pressure and long probe delays. The dashed line corresponds to the H 2 cell temperature ( 294 K ). Error bars correspond to 1 standard deviation of temperatures extracted from six replicate measurements made over the course of several days; scatter in error bar magnitudes arises predominantly from the finite number of measurements used to calculate these standard deviations.

Fig. 2
Fig. 2

(a) Calculated T from Boltzmann fits to room-temperature H 2 ps-CARS signal over a range of probe-delay times for P = 1 , 5, and 10 bars . These PDD fits were calculated after correcting the relative Q ( J ) intensities using empirically determined J-dependent lifetimes. Only one representative error bar is shown here for clarity. The dashed line corresponds to the H 2 cell temperature ( 294 K ). (b) One-standard-deviation ( 1 σ ) uncertainty for each data point resulting from six replicate measurements made over the course of several days.

Fig. 3
Fig. 3

(a) Decay-lifetime-corrected temperature determined from spectra observed at two discrete probe-pulse delays ( t 1 = 103 ps ; t 2 varies from 150 to 530 ps ) via Eqs. (5, 6) for P = 1 , 5, and 10 bars . Only one representative error bar is shown here for clarity. (b) One-standard-deviation ( 1 σ ) uncertainty for each data point resulting from six replicate measurements made over the course of several days. The dashed line in (a) corresponds to the H 2 cell temperature ( 294 K ).

Fig. 4
Fig. 4

Example plot of f ( J ) versus initial rotational energy, E 0 , J , associated with the three discrete H 2 CARS spectra obtained at t 1 = 103 ps , t 2 = 157 ps , and t 3 = 317 ps at room temperature and P = 10 bars . As discussed in the text, a least-squares fit to these data allows determination of temperature ( 288 K in this example).

Fig. 5
Fig. 5

(a) Decay-lifetime-corrected temperature determined from spectra observed at three discrete probe-pulse delays ( t 1 = 103 ps , t 2 = 157 ps , t 3 varies from 200 to 530 ps ) via Eqs. (5, 6) for P = 1 , 5, and 10 bars . Only one representative error bar is shown here for clarity. (b) One-standard- deviation ( 1 σ ) uncertainty for each data point resulting from six replicate measurements made over the course of several days. The dashed line in (a) corresponds to the H 2 cell temperature ( 294 K ).

Fig. 6
Fig. 6

Comparison of temperatures determined via PDI and three-delay decay-lifetime-corrected Boltzmann fits for two mixtures (70% H 2 :30% CH 4 and 30% H 2 :70% C 2 H 4 ) at room temperature and P = 10 bars . (a) PDI Boltzmann fits at several probe-pulse delays. (b) Decay-lifetime-corrected temperature determined from spectra observed at three discrete probe-pulse delays ( t 1 = 103 ps , t 2 = 157 ps , t 3 varies from 200 to 530 ps ) via Eqs. (5, 6). In both panels, a dashed line represents the measured cell temperature, whereas the dashed–dotted lines represent ± 3.5 % of this temperature. Error bars correspond to standard deviations of least-squares fits to Eq. (5). Data at 530 ps have been excluded from the H 2 / C 2 H 4 case because of poor signal-to-noise ratio.

Fig. 7
Fig. 7

Comparison of PDI Boltzmann fits and decay-lifetime- corrected temperature determination for pure H 2 at P = 1 bar and T = 900 K . (a) PDI Boltzmann fits at several probe-pulse delays; (b) decay-lifetime-corrected temperature determined from spectra observed at three discrete probe-pulse delays ( t 1 = 103 ps , t 2 = 157 ps , t 3 varies from 200 to 480 ps ) via Eqs. (5, 6). In both panels, a dashed line represents the measured temperature of the heated cell, whereas the dashed–dotted lines represent ± 3.5 % of this temperature. Error bars correspond to standard deviations of least-squares fits to Eq. (5); the relatively large error bars at a delay of t = 480 ps in (a) result from poor experimental signal-to-noise at this long delay.

Fig. 8
Fig. 8

(a) PDI temperatures calculated for a H 2 –air flame ( Φ = 1.2 ) at select probe-pulse delays. Error bars correspond to 1-standard-deviation uncertainty in the least-squares fits associated with Eq. (5); these uncertainties are indicative of the quality of the fits at each probe delay. Dashed line corresponds to the expected adiabatic flame temperature under equilibrium conditions ( T eq ). (b) Plot of f ( J ) versus initial rotational energy, E 0 , J , associated with the three discrete H 2 CARS spectra [ Q ( 1 ) Q ( 9 ) lines] obtained at t 1 = 100 ps , t 2 = 150 ps , and t 3 = 250 ps for a H 2 –air flame ( Φ = 1.2 ). A least-squares fit to these data, discussed in the text, yields a temperature of 2370 K , with an associated 1-standard-deviation uncertainty of 1.2%. In both panels, individual line intensities have been iteratively corrected to account for thermal population of vibrational hot bands as described in the text.

Tables (1)

Tables Icon

Table 1 CARS Decay Lifetimes, τ CARS , J , in Picoseconds, Used for Room-Temperature, Delayed-Probe Thermometry Corrections Depicted in Fig. 2 a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I PDI , J | χ J ( 3 ) | 2 { N P v , J ( 1 P v , J P v , J ) [ 1 + 4 45 b J , J ( γ a ) 2 ] F ( J ) } 2 ,
F ( J ) = [ 1 3 2 ( B e ω e ) 2 ( a 1 + 1 ) ( J ) ( J + 1 ) ] 2 ,
P v , J = g J exp ( E v , J k B T ) v = 0 J = 0 g J exp ( E v , J k B T ) .
g J = ( 2 J + 1 ) [ 2 ( 1 ) J ] ,
f ( J ) = I PDI , J [ 1 + 4 45 b J , J ( γ a ) 2 ] 2 [ F ( J ) ] 2 = ln A 2 E 0 , J k B T ,
I PDD , J ( t ) = I PDI , J exp ( t / τ CARS , J ) ,
ln [ I PDD , J ( t ) ] = ln [ I PDI , J ] t / τ CARS , J .

Metrics