Abstract

A special sampling structure based on double exposure technology is proposed to achieve dual- wavelength lasing in the distributed feedback fiber laser. This structure is composed of two grating pitches in one sampling period, which could be realized by changing the fiber’s length in the fabrication. Through employing an equivalent phase shift, only a submicrometer-level precision is required for precise phase control. Then a stable dual-wavelength laser with the spacing of 400pm is obtained in the experiment successfully. The output power is 30.46μW and the sidemode suppression ratio is 46dB under a pumped power of 146mW.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
    [CrossRef]
  2. M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
    [CrossRef]
  3. Q. Mao and J. W. Lit, “Multiwavelength erbium-doped fiber lasers with active overlapping linear cavities,” J. Lightwave Technol. 21, 160–169 (2003).
    [CrossRef]
  4. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
    [CrossRef]
  5. M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
    [CrossRef]
  6. R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of large-band distributed Fabry-Perot structure,” IEEE Photon. Technol. Lett. 16, 1017–1019 (2004).
    [CrossRef]
  7. J. Sun, Y. Dai, Y. Zhang, and X. Chen, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photon. Technol. Lett. 18, 2493–2495 (2006).
    [CrossRef]
  8. Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
    [CrossRef]
  9. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
    [CrossRef]

2006 (1)

J. Sun, Y. Dai, Y. Zhang, and X. Chen, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photon. Technol. Lett. 18, 2493–2495 (2006).
[CrossRef]

2004 (3)

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
[CrossRef]

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of large-band distributed Fabry-Perot structure,” IEEE Photon. Technol. Lett. 16, 1017–1019 (2004).
[CrossRef]

2003 (1)

2000 (1)

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
[CrossRef]

1999 (1)

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

1996 (1)

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

1990 (1)

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

Alam, S.-U.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Bennion, I.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Castonguay, I.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of large-band distributed Fabry-Perot structure,” IEEE Photon. Technol. Lett. 16, 1017–1019 (2004).
[CrossRef]

Chen, X.

J. Sun, Y. Dai, Y. Zhang, and X. Chen, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photon. Technol. Lett. 18, 2493–2495 (2006).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
[CrossRef]

Chow, J.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Cowle, G. J.

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
[CrossRef]

Dai, Y.

J. Sun, Y. Dai, Y. Zhang, and X. Chen, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photon. Technol. Lett. 18, 2493–2495 (2006).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
[CrossRef]

Desurvire, E.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

Doucet, S.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of large-band distributed Fabry-Perot structure,” IEEE Photon. Technol. Lett. 16, 1017–1019 (2004).
[CrossRef]

Eggleton, B.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Fan, C.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
[CrossRef]

Grudinin, A. B.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Ibsen, M.

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
[CrossRef]

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Jiang, D.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
[CrossRef]

Laming, R. I.

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
[CrossRef]

LaRochelle, S.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of large-band distributed Fabry-Perot structure,” IEEE Photon. Technol. Lett. 16, 1017–1019 (2004).
[CrossRef]

Li, H.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
[CrossRef]

Lit, J. W.

Mao, Q.

Payne, D. N.

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Ronnekleiv, E.

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
[CrossRef]

Rothenberg, J. E.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
[CrossRef]

Sheng, Y.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
[CrossRef]

Simpson, J. R.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

Slavik, R.

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of large-band distributed Fabry-Perot structure,” IEEE Photon. Technol. Lett. 16, 1017–1019 (2004).
[CrossRef]

Sugden, K.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Sun, J.

J. Sun, Y. Dai, Y. Zhang, and X. Chen, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photon. Technol. Lett. 18, 2493–2495 (2006).
[CrossRef]

Town, G.

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

Wang, Y.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
[CrossRef]

Xie, S.

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
[CrossRef]

Zervas, M. N.

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
[CrossRef]

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

Zhang, Y.

J. Sun, Y. Dai, Y. Zhang, and X. Chen, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photon. Technol. Lett. 18, 2493–2495 (2006).
[CrossRef]

Zweiback, J.

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
[CrossRef]

Zyskind, J. L.

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

Electron. Lett. (1)

M. Ibsen, E. Ronnekleiv, G. J. Cowle, M. N. Zervas, and R. I. Laming, “Multiple wavelength all-fiber DFB lasers,” Electron. Lett. 36, 143–144 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (7)

R. Slavik, I. Castonguay, S. LaRochelle, and S. Doucet, “Short multiwavelength fiber laser made of large-band distributed Fabry-Perot structure,” IEEE Photon. Technol. Lett. 16, 1017–1019 (2004).
[CrossRef]

J. Sun, Y. Dai, Y. Zhang, and X. Chen, “Dual-wavelength DFB fiber laser based on unequalized phase shifts,” IEEE Photon. Technol. Lett. 18, 2493–2495 (2006).
[CrossRef]

Y. Sheng, J. E. Rothenberg, H. Li, Y. Wang, and J. Zweiback, “Split of phase shifts in a phase mask for fiber Bragg gratings,” IEEE Photon. Technol. Lett. 16, 1316–1318 (2004).
[CrossRef]

Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, “Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period,” IEEE Photon. Technol. Lett. 16, 2284–2286 (2004).
[CrossRef]

E. Desurvire, J. L. Zyskind, and J. R. Simpson, “Spectral gain hole burning at 1.53 μm in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2, 246–248 (1990).
[CrossRef]

M. Ibsen, S.-U. Alam, M. N. Zervas, A. B. Grudinin, and D. N. Payne, “8- and 16-channel all-fiber DFB laser WDM transmitters with integrated pump redundancy,” IEEE Photon. Technol. Lett. 11, 1114–1116 (1999).
[CrossRef]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett. 8, 60–62 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Illustration of grating structure with EPS in SBGs: (a) original SBG, (b) the proposed SBG.

Fig. 2
Fig. 2

Transmission spectra of SBGs with π EPS: (a) original SBG, (b) the proposed SBG.

Fig. 3
Fig. 3

Fabrication setup.

Fig. 4
Fig. 4

Transmission spectra of the proposed SBG in the 1 st channel. Solid curve, measured spectrum; dotted curve, calculated spectrum.

Fig. 5
Fig. 5

(a) Experiment setup (OSA: optical spectrum analyzer), (b) lasing spectra of the dual-wavelength laser measured every 30 min for 2 h .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n ( z ) = s ( z ) exp ( i 2 π z Λ ) + c ,
s ( z ) = m F m exp ( i 2 m π z P ) .
Δ n m ( z ) = { F m exp ( i 2 π z Λ + i 2 m π z P ) ( z < z 0 ) F m exp ( i 2 π z Λ + i 2 m π z P i θ ) ( z z 0 ) ,
θ = 2 m π Δ P P .
λ 1 = λ 0 + λ 0 2 2 n eff P = 2 n eff ( Λ + Λ 2 P ) .
Δ λ = 2 n eff ( Λ 2 Λ 1 + Λ 2 2 Λ 1 2 P ) 2 n eff ( Λ 2 Λ 1 ) .

Metrics