Abstract

A miniaturized, passively Q-switched Nd:YAG laser oscillator–power amplifier is reported, which is axially pumped by a compact, fiber-coupled, high-power, quasi-cw diode laser module. The pumping intensity of the oscillator crystal can be adjusted independently of the pumping intensity of the amplifier. This ensures that the oscillator pulse enters the amplifier when its maximum population density is reached. Furthermore, pulse bursts can be generated with a definite, adjustable number of single pulses. Maximum pulse energies of 8.4 and 22mJ were achieved for a single pulse and for a pulse burst, respectively, at a pumping power of 470W. The pulse widths were 2ns, whereas the beam quality corresponded to M2<1.5. The laser is appropriate for scaling the power to the 10MW range. Operation by using a 100m pumping fiber was demonstrated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
    [CrossRef]
  2. D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).
  3. D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
    [CrossRef]
  4. D.M.Lubman, ed., Lasers and Mass Spectrometry (Oxford University, 1990).
  5. C. Illenseer, H.-G. Löhmannsröben, and R. H. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monit. 5, 780–785 (2003).
    [CrossRef] [PubMed]
  6. C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
    [CrossRef]
  7. T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1 MW peak output power for microdrilling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.
  8. P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator–amplifier,” Opt. Lett. 31, 1991–1993 (2006).
    [CrossRef] [PubMed]
  9. C. D. Brooks and F. Di Teodoro, “1 mJ energy, 1 MW peak power, 10 W average power, spectrally narrow, diffraction-limited pulses from a photonic-crystal fiber amplifier,” Opt. Express 13, 8999–9002 (2005).
    [CrossRef] [PubMed]
  10. P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
    [CrossRef]
  11. F. Di Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “Diffraction-limited, 300 kW peak-power pulses from a coiled multimode fiber amplifier,” Opt. Lett. 27, 518–520(2002).
    [CrossRef]
  12. R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, “Peak-power limits on fiber amplifiers imposed by self-focusing,” Opt. Lett. 31, 3423–3425 (2006).
    [CrossRef] [PubMed]
  13. A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
    [CrossRef]
  14. P. Russel, “Photonic crystal fibers,” Science 299, 358–362(2003).
    [CrossRef]
  15. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, and A. Tünnermann, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14, 2715–2720 (2006).
    [CrossRef] [PubMed]
  16. J. J. Zayhowski and A. L. Wilson Jr., “Energy-scavenging amplifiers for miniature solid-state lasers,” Opt. Lett. 29, 1218–1220 (2004).
    [CrossRef] [PubMed]

2008 (1)

P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
[CrossRef]

2007 (1)

A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

2006 (5)

2005 (1)

2004 (1)

2003 (2)

P. Russel, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef]

C. Illenseer, H.-G. Löhmannsröben, and R. H. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monit. 5, 780–785 (2003).
[CrossRef] [PubMed]

2002 (1)

2000 (1)

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

1993 (1)

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Bauer, C.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Binks, D. J.

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Brand, T.

Brooks, C. D.

Burgmeier, J.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Cheng, M.-Y.

A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Di Teodoro, F.

Do, B. T.

P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
[CrossRef]

Farrow, R. L.

P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
[CrossRef]

R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, “Peak-power limits on fiber amplifiers imposed by self-focusing,” Opt. Lett. 31, 3423–3425 (2006).
[CrossRef] [PubMed]

Fève, J.-P.

P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
[CrossRef]

Frede, M.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Galvanauskas, A.

A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Geiser, P.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Golding, P. S.

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Haag, M.

Hadley, G. R.

Hahn, S.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Halldorsson, T.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Häring, R.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Heinemann, S.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Herrmann, H.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Holl, G.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Hou, K.-C.

A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Huss, R.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Illenseer, C.

C. Illenseer, H.-G. Löhmannsröben, and R. H. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monit. 5, 780–785 (2003).
[CrossRef] [PubMed]

Kan, H.

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1 MW peak output power for microdrilling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.

King, T. A.

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Kliner, D. A. V.

Köhler, B.

Koplow, J. P.

Kracht, D.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Krichbaumer, W.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Liao, K.-H.

A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

Limpert, J.

Löhmannsröben, H.-G.

C. Illenseer, H.-G. Löhmannsröben, and R. H. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monit. 5, 780–785 (2003).
[CrossRef] [PubMed]

Matsuoka, Y.

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1 MW peak output power for microdrilling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.

Mehnert, A.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Moore, S. W.

Nagel, E.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Neumann, J.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Peuser, P.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator–amplifier,” Opt. Lett. 31, 1991–1993 (2006).
[CrossRef] [PubMed]

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Platz, W.

Röser, F.

Rothhardt, J.

Russel, P.

P. Russel, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef]

Sakai, H.

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1 MW peak output power for microdrilling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.

Schade, W.

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

Schmidt, O.

Schmitt, N. P.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Schmitt, R. L.

P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
[CrossRef]

Schrader, P. E.

P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
[CrossRef]

Schreiber, T.

Schultze, R. H.

C. Illenseer, H.-G. Löhmannsröben, and R. H. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monit. 5, 780–785 (2003).
[CrossRef] [PubMed]

Smith, A. V.

Sone, A.

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1 MW peak output power for microdrilling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.

Streicher, J.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Taira, T.

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1 MW peak output power for microdrilling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.

Tünnermann, A.

Werner, C.

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Wilhelm, R.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Wilson, A. L.

Zayhowski, J. J.

Zeller, P.

Appl. Phys. B (1)

C. Bauer, P. Geiser, J. Burgmeier, G. Holl, and W. Schade, “Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives,” Appl. Phys. B 85, 251–256 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, “High peak power pulse amplification in large-core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13, 559–566 (2007).
[CrossRef]

J. Environ. Monit. (1)

C. Illenseer, H.-G. Löhmannsröben, and R. H. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monit. 5, 780–785 (2003).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899–1912 (2000).

Opt. Express (2)

Opt. Laser Technol. (1)

W. Krichbaumer, H. Herrmann, E. Nagel, R. Häring, J. Streicher, C. Werner, A. Mehnert, T. Halldorsson, S. Heinemann, P. Peuser, and N. P. Schmitt, “A diode-pumped Nd:YAG lidar for airborne cloud measurements,” Opt. Laser Technol. 25, 283–287 (1993).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (2)

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

P. E. Schrader, J.-P. Fève, R. L. Farrow, D. A. V. Kliner, R. L. Schmitt, and B. T. Do, “Power scaling of fiber-based amplifiers seeded with microchip lasers,” Proc. SPIE 6871, 68710T(2008).
[CrossRef]

Science (1)

P. Russel, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef]

Other (2)

T. Taira, Y. Matsuoka, H. Sakai, A. Sone, and H. Kan, “Passively Q-switched Nd:YAG microchip laser over 1 MW peak output power for microdrilling,” in Conference on Lasers and Electro-Optics, Technical Digest (CD) (Optical Society of America, 2006), paper CWF6.

D.M.Lubman, ed., Lasers and Mass Spectrometry (Oxford University, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup of the miniature laser oscillator–amplifier.

Fig. 2
Fig. 2

Output energy of the miniature laser oscillator–amplifier at a total pumping power of 470 W , plotted as a function of the duration of the pumping pulse.

Fig. 3
Fig. 3

Oscilloscope traces of about 1000 pulses. The time scale is 2 ns per division.

Fig. 4
Fig. 4

Beam profile recorded at maximum pulse energy. In addition, intensity curves for horizontal and vertical, central cross sections are displayed together with corresponding Gaussian fit curves.

Fig. 5
Fig. 5

Pulse energy of the miniature laser oscillator–amplifier (solid diamonds) as a function of the pumping energy at a constant duration of the diode pulse of 328 μs . Open squares represent the contribution of the amplifier (see text).

Fig. 6
Fig. 6

Oscilloscope traces of the diode pulse and of a pulse burst with three 5.2 mJ pulses. The pulse burst was generated by means of tuning the distance of the small lens in front of the oscillator at constant pumping power and constant duration of the diode pulse. The time scale is 50 μs per division.

Fig. 7
Fig. 7

Time intervals between the nanosecond pulses, measured for pulse bursts with different pulse numbers, at maximum pumping power and constant duration of the diode pulse.

Fig. 8
Fig. 8

Output pulse energy for pulse bursts with different pulse numbers, measured at maximum pumping power and constant duration of the diode pulse. The lower curve displays the energy of each single pulse within a burst, whereas the upper curve represents the sum of the pulse energies.

Fig. 9
Fig. 9

Optical-to-optical efficiency of the miniature laser oscillator–amplifier as a function of the number of pulses within a burst, at maximum pumping power and constant duration of the diode pulse.

Metrics