Abstract

Simulated reconstruction of a three-dimensional (3D) object in 360° from cylindrical hologram is proposed. The simulation is done using a fast calculation method, where wave propagation in spectral domain and in cylindrical coordinates is used to generate the cylindrical hologram of a 3D object. The same procedure is followed to reconstruct the object back. The reconstructions resembled the original object and could be seen from all 360°. The whole simulation process is done using open-source software.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Jeong, “Cylindrical holography and some proposed applications,” J. Opt. Soc. Am. 57, 1396–1398 (1967).
    [CrossRef]
  2. O. Soares and J. Fernandes, “Cylindrical hologram of 360°,” Appl. Opt. 21, 3194–3196 (1982).
    [CrossRef] [PubMed]
  3. A. Lohmann, “Three dimensional properties of wave fields,” J. Opt. Soc. Am. A 19, 1563–1571 (2002).
    [CrossRef]
  4. T. Tommasi and B. Bianco, “Computer-generated holograms of light diffraction between rotated planes,” Opt. Lett. 17, 556–558 (1992).
    [CrossRef] [PubMed]
  5. Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” Proc. SPIE 5742, 267–274 (2005).
    [CrossRef]
  6. A. Kashiwagi and Y. Sakamoto, “A fast calculation method of cylindrical computer-generated holograms which perform image-reconstruction of volume data,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2007).
  7. T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Fast calculation method for computer-generated cylindrical holograms,” Appl. Opt. 47, D63–D70 (2008).
    [CrossRef] [PubMed]
  8. T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Computer generated cylindrical rainbow hologram,” Proc. SPIE 6912, 69121C (2008).
    [CrossRef]
  9. Y. Sando, M. Itoh, and T. Yatagai, “Fast calculation method for cylindrical computer-generated holograms,” Opt. Express 13, 1418–1423 (2005).
    [CrossRef] [PubMed]
  10. B. J. Jackin and T. Yatagai, “Fast calculation method for computer-generated cylindrical hologram based on wave propagation in spectral domain,” Opt. Express 18, 25546–25555(2010).
    [CrossRef] [PubMed]
  11. E. Williams, Fourier Acoustics, Sound Radiation and Near Field Acoustical Holography (Academic, 1999).
  12. C. McElhinney, J. McDonald, A. Castro, Y. Frauel, B. Javidi, and T. Naughton, “Depth-independent segmentation of macroscopic three-dimensional objects encoded in single perspectives of digital holograms,” Opt. Lett. 32, 1229–1231(2007).
    [CrossRef] [PubMed]
  13. Python Software Foundation, “Python,” http://www.python.org/.
  14. KitWare, “VTK,” http://www.vtk.org/.
  15. Andreas Klockner, “PyCUDA,” http://mathema.tician.de/software/pycuda.
  16. Pham Minh Tri, “PyOpenCV,” http://code.google.com/p/pyopencv.

2010

2008

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Fast calculation method for computer-generated cylindrical holograms,” Appl. Opt. 47, D63–D70 (2008).
[CrossRef] [PubMed]

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Computer generated cylindrical rainbow hologram,” Proc. SPIE 6912, 69121C (2008).
[CrossRef]

2007

2005

2002

1992

1982

1967

Bianco, B.

Castro, A.

Fernandes, J.

Frauel, Y.

Fujii, T.

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Fast calculation method for computer-generated cylindrical holograms,” Appl. Opt. 47, D63–D70 (2008).
[CrossRef] [PubMed]

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Computer generated cylindrical rainbow hologram,” Proc. SPIE 6912, 69121C (2008).
[CrossRef]

Itoh, M.

Jackin, B. J.

Javidi, B.

Jeong, T.

Kashiwagi, A.

A. Kashiwagi and Y. Sakamoto, “A fast calculation method of cylindrical computer-generated holograms which perform image-reconstruction of volume data,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2007).

Lohmann, A.

McDonald, J.

McElhinney, C.

Naughton, T.

Sakamoto, Y.

Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” Proc. SPIE 5742, 267–274 (2005).
[CrossRef]

A. Kashiwagi and Y. Sakamoto, “A fast calculation method of cylindrical computer-generated holograms which perform image-reconstruction of volume data,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2007).

Sando, Y.

Soares, O.

Tobise, M.

Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” Proc. SPIE 5742, 267–274 (2005).
[CrossRef]

Tommasi, T.

Williams, E.

E. Williams, Fourier Acoustics, Sound Radiation and Near Field Acoustical Holography (Academic, 1999).

Yamaguchi, T.

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Fast calculation method for computer-generated cylindrical holograms,” Appl. Opt. 47, D63–D70 (2008).
[CrossRef] [PubMed]

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Computer generated cylindrical rainbow hologram,” Proc. SPIE 6912, 69121C (2008).
[CrossRef]

Yatagai, T.

Yoshikawa, H.

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Computer generated cylindrical rainbow hologram,” Proc. SPIE 6912, 69121C (2008).
[CrossRef]

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Fast calculation method for computer-generated cylindrical holograms,” Appl. Opt. 47, D63–D70 (2008).
[CrossRef] [PubMed]

Appl. Opt.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Proc. SPIE

Y. Sakamoto and M. Tobise, “Computer generated cylindrical hologram,” Proc. SPIE 5742, 267–274 (2005).
[CrossRef]

T. Yamaguchi, T. Fujii, and H. Yoshikawa, “Computer generated cylindrical rainbow hologram,” Proc. SPIE 6912, 69121C (2008).
[CrossRef]

Other

E. Williams, Fourier Acoustics, Sound Radiation and Near Field Acoustical Holography (Academic, 1999).

A. Kashiwagi and Y. Sakamoto, “A fast calculation method of cylindrical computer-generated holograms which perform image-reconstruction of volume data,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2007).

Python Software Foundation, “Python,” http://www.python.org/.

KitWare, “VTK,” http://www.vtk.org/.

Andreas Klockner, “PyCUDA,” http://mathema.tician.de/software/pycuda.

Pham Minh Tri, “PyOpenCV,” http://code.google.com/p/pyopencv.

Supplementary Material (2)

» Media 1: MOV (1460 KB)     
» Media 2: MOV (2979 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic geometry of the simulation problem.

Fig. 2
Fig. 2

Generated 3D object showing view angles 0 ° to 90 ° (Media 1).

Fig. 3
Fig. 3

Schematic of slicing the 3D object (a) view from side, (b) view from above.

Fig. 4
Fig. 4

Hologram of the 3D object.

Fig. 5
Fig. 5

Reconstructed 3D object showing view angles 0 ° to 90 ° (Media 2).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

p ( r , ϕ , y ) = n = e i n ϕ 1 2 π P n ( a , k y ) e i k y y H n ( 1 ) ( k r r ) H n ( 1 ) ( k r a ) d k y ,
P n ( a , k y ) = 1 2 π 0 2 π d ϕ p ( a , ϕ , y ) e i n ϕ e i k y y d y ,
T ( a , k a , r , k r ) = H n ( 1 ) ( k r r ) H n ( 1 ) ( k r a ) ,
p ( r , ϕ , y ) = IFFT [ FFT ( p ( a , ϕ , y ) ) × TF ] .
Δ L 0 N r λ ( or ) N Δ L 0 2 r λ ,
Hologram = | n = 1 64 ( IFFT [ FFT ( Object ( n ) ) × TF ( n ) ] ) + IFFT [ FFT ( Reference ) × TF ( r ) ] | 2 .
Reconstruction ( n ) = | IFFT [ FFT ( Hologram × Conjugate [ Reference ] ) × TF ( n ) ] | 2 .

Metrics