Abstract

We describe a simple technique for coaxial holographic image recording and reconstruction, employing a spatial light modulator (SLM) modified in pure phase mode. In the image encoding system, both the reference beam in the outside part and the signal beam in the inside part are displayed by an SLM based on the twisted nematic LCD. For a binary image, the part with amplitude of “1” is modulated with random phase, while the part with amplitude of “0” is modulated with constant phase. After blocking the dc component of the spatial frequencies, a Fourier transform (FT) hologram is recorded with a uniform intensity distribution. The amplitude image is reconstructed by illuminating the reference beam onto the hologram, which is much simpler than existing phase modulated FT holography techniques. The technique of coaxial holographic image encoding and recovering with pure phase modulation is demonstrated theoretically and experimentally in this paper. As the holograms are recorded without the high-intensity dc component, the storage density with volume medium may be increased with the increase of dynamic range. Such a simple modulation method will have potential applications in areas such as holographic encryption and high-density disk storage systems.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
    [CrossRef] [PubMed]
  2. A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. Banaszak Holl, and Z. Chen, “Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells,” Opt. Lett. 36, 912–914 (2011).
    [CrossRef] [PubMed]
  3. A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19, 6684–6698 (2011).
    [CrossRef] [PubMed]
  4. P. Banerjee, G. Barbastathis, M. Kim, and N. Kukhtarev, “Digital holography and 3-D imaging,” Appl. Opt. 50, DH1–DH2 (2011).
    [CrossRef] [PubMed]
  5. Y. Shinoda, J.-P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T.-C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011).
    [CrossRef] [PubMed]
  6. P. W. M. Tsang, T.-C. Poon, and K. W. K. Cheung, “Fast numerical generation and encryption of computer-generated Fresnel holograms,” Appl. Opt. 50, B46–B52 (2011).
    [CrossRef] [PubMed]
  7. N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
    [CrossRef]
  8. H. T. Chang, H.-E. Hwang, C.-L. Lee, and M.-T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011).
    [CrossRef] [PubMed]
  9. J. A. Rodrigo, T. Alieva, A. Cámara, Ó. Martínez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064–6077(2011).
    [CrossRef] [PubMed]
  10. J.-P. Liu, “Angle-multiplexed holographic data storage with minimum cross talk noise,” J. Opt. Soc. Am. A 28, 229–237(2011).
    [CrossRef]
  11. Wei Jia, Zhongyu Chen, Fung Jacky Wen, and Po Sheun Chung, “Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator,” Appl. Opt. 50, B12–B17 (2011).
    [CrossRef] [PubMed]
  12. Z. Y. Chan, W. Jia, and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M (2010).
    [CrossRef]
  13. Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 67750S (2007).
    [CrossRef]
  14. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898(1996).
    [CrossRef] [PubMed]
  15. C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    [CrossRef] [PubMed]
  16. Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
    [CrossRef] [PubMed]
  17. J.-S. Jang and D.-H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797–1799 (2001).
    [CrossRef]
  18. B. Das, J. Joseph, and K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63(2009).
    [CrossRef]
  19. B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
    [CrossRef]
  20. S. Yasuda, K. Kawano, J. Minabe, Y. Ogasawara, K. Hayashi, K. Haga, H. Yoshizawa, and M. Furuki, “Coaxial holographic data storage without recording the dc components,” Opt. Lett. 31, 2607–2609 (2006).
    [CrossRef] [PubMed]
  21. http://www.holoeye.com/spatial_light_modulator_lc_r_2500.html.

2011 (9)

Wei Jia, Zhongyu Chen, Fung Jacky Wen, and Po Sheun Chung, “Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator,” Appl. Opt. 50, B12–B17 (2011).
[CrossRef] [PubMed]

Y. Shinoda, J.-P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T.-C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011).
[CrossRef] [PubMed]

P. W. M. Tsang, T.-C. Poon, and K. W. K. Cheung, “Fast numerical generation and encryption of computer-generated Fresnel holograms,” Appl. Opt. 50, B46–B52 (2011).
[CrossRef] [PubMed]

J.-P. Liu, “Angle-multiplexed holographic data storage with minimum cross talk noise,” J. Opt. Soc. Am. A 28, 229–237(2011).
[CrossRef]

H. T. Chang, H.-E. Hwang, C.-L. Lee, and M.-T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011).
[CrossRef] [PubMed]

P. Banerjee, G. Barbastathis, M. Kim, and N. Kukhtarev, “Digital holography and 3-D imaging,” Appl. Opt. 50, DH1–DH2 (2011).
[CrossRef] [PubMed]

A. Khmaladze, R. L. Matz, C. Zhang, T. Wang, M. M. Banaszak Holl, and Z. Chen, “Dual-wavelength linear regression phase unwrapping in three-dimensional microscopic images of cancer cells,” Opt. Lett. 36, 912–914 (2011).
[CrossRef] [PubMed]

J. A. Rodrigo, T. Alieva, A. Cámara, Ó. Martínez-Matos, P. Cheben, and M. L. Calvo, “Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections,” Opt. Express 19, 6064–6077(2011).
[CrossRef] [PubMed]

A. El Mallahi and F. Dubois, “Dependency and precision of the refocusing criterion based on amplitude analysis in digital holographic microscopy,” Opt. Express 19, 6684–6698 (2011).
[CrossRef] [PubMed]

2010 (2)

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Z. Y. Chan, W. Jia, and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M (2010).
[CrossRef]

2009 (2)

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63(2009).
[CrossRef]

2007 (1)

Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 67750S (2007).
[CrossRef]

2006 (1)

2001 (1)

1996 (1)

1972 (1)

1970 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
[CrossRef] [PubMed]

Alieva, T.

Banaszak Holl, M. M.

Banerjee, P.

Barbastathis, G.

Burckhardt, C. B.

Burr, G. W.

Calvo, M. L.

Cámara, A.

Chan, Z. Y.

Z. Y. Chan, W. Jia, and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M (2010).
[CrossRef]

Chang, H. T.

Cheben, P.

Chen, Z.

Chen, Z. Y.

Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 67750S (2007).
[CrossRef]

Chen, Zhongyu

Cheung, K. W. K.

Chung, P. S.

Y. Shinoda, J.-P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T.-C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011).
[CrossRef] [PubMed]

Z. Y. Chan, W. Jia, and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M (2010).
[CrossRef]

Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 67750S (2007).
[CrossRef]

Chung, Po Sheun

Das, B.

B. Das, J. Joseph, and K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63(2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

Dobson, K.

Dubois, F.

El Mallahi, A.

Furuki, M.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
[CrossRef] [PubMed]

Haga, K.

Hayashi, K.

Hwang, H.-E.

Jang, J.-S.

Jia, W.

Z. Y. Chan, W. Jia, and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M (2010).
[CrossRef]

Jia, Wei

Joseph, J.

B. Das, J. Joseph, and K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63(2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

Kawano, K.

Khmaladze, A.

Kim, M.

Kukhtarev, N.

Lee, C.-L.

Lee, M.-T.

Liu, J.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Liu, J.-P.

Martínez-Matos, Ó.

Matz, R. L.

Minabe, J.

Miyamura, Y.

Mok, F. H.

Ogasawara, Y.

Oshida, Y.

Poon, T.-C.

Psaltis, D.

Rodrigo, J. A.

Shin, D.-H.

Shinoda, Y.

Singh, K.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63(2009).
[CrossRef]

Takeda, Y.

Tsang, P. W. M.

Wang, T.

Wang, Y.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Wen, Fung Jacky

Xie, J.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Yasuda, S.

Yoshizawa, H.

Zhang, C.

Zhou, X.

Zhu, N.

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

Appl. Opt. (8)

C. B. Burckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
[CrossRef] [PubMed]

Y. Takeda, Y. Oshida, and Y. Miyamura, “Random phase shifters for Fourier transformed holograms,” Appl. Opt. 11, 818–822 (1972).
[CrossRef] [PubMed]

B. Das, J. Joseph, and K. Singh, “Improved data search by zero-order (dc) peak filtering in a defocused volume holographic content-addressable memory,” Appl. Opt. 48, 55–63(2009).
[CrossRef]

Wei Jia, Zhongyu Chen, Fung Jacky Wen, and Po Sheun Chung, “Implementation of single-beam multiplexing encoding with a dually modulated spatial light modulator,” Appl. Opt. 50, B12–B17 (2011).
[CrossRef] [PubMed]

Y. Shinoda, J.-P. Liu, P. S. Chung, K. Dobson, X. Zhou, and T.-C. Poon, “Three-dimensional complex image coding using a circular Dammann grating,” Appl. Opt. 50, B38–B45 (2011).
[CrossRef] [PubMed]

P. W. M. Tsang, T.-C. Poon, and K. W. K. Cheung, “Fast numerical generation and encryption of computer-generated Fresnel holograms,” Appl. Opt. 50, B46–B52 (2011).
[CrossRef] [PubMed]

H. T. Chang, H.-E. Hwang, C.-L. Lee, and M.-T. Lee, “Wavelength multiplexing multiple-image encryption using cascaded phase-only masks in the Fresnel transform domain,” Appl. Opt. 50, 710–716 (2011).
[CrossRef] [PubMed]

P. Banerjee, G. Barbastathis, M. Kim, and N. Kukhtarev, “Digital holography and 3-D imaging,” Appl. Opt. 50, DH1–DH2 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778(1948).
[CrossRef] [PubMed]

Opt. Commun. (2)

N. Zhu, Y. Wang, J. Liu, and J. Xie, “Holographic projection based on interference and analytical algorithm,” Opt. Commun. 283, 4969–4971 (2010).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282, 2147–2154 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (2)

Z. Y. Chan, W. Jia, and P. S. Chung, “Using dual modulation modes in spatial light modulator (SLM) for a novel single-beam image storage and retrieval system,” Proc. SPIE 7723, 77231M (2010).
[CrossRef]

Z. Y. Chen and P. S. Chung, “A high-capacity storage device for communications and multimedia systems,” Proc. SPIE 6775, 67750S (2007).
[CrossRef]

Other (1)

http://www.holoeye.com/spatial_light_modulator_lc_r_2500.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram for retrieving an amplitude image from a pure phase modulated one.

Fig. 2
Fig. 2

Reconstruction of the amplitude image with a filter on the FT plane. (a) Binary amplitude image, (b) pure phase modulated image in the phase domain, (c) the reconstructed amplitude image, and (d) the reconstructed image after binary processing.

Fig. 3
Fig. 3

Simulation of the coaxial holographic data encoding with pure phase modulation. (a) Phase encoded reference and object beam, (b) hologram recorded without the dc component, and (c) recovered image with the corresponding reference beam.

Fig. 4
Fig. 4

Holoeye LC-R 2500 SLM modulation of (a) the phase and (b) the amplitude with the gray level from 0 to 255.

Fig. 5
Fig. 5

Experimental setup for coaxial holographic data encoding and reconstruction with pure phase modulation.

Fig. 6
Fig. 6

Experimental results with (a) the coaxial beam displayed on the SLM and (b) the reconstructed image captured by a camera.

Fig. 7
Fig. 7

Experimental results with two multiplexed images.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

O ( m , n ) = exp ( i φ o ( m , n ) ) , φ o ( m , n ) = { 0 , o ( m , n ) = 0 2 π * rand ( 0 , 1 ) , o ( m , n ) = 1 ,
SLM ( m , n ) = { exp ( i φ r ( m , n ) ) = exp ( i * 2 π * rand ( 0 , 1 ) ) , ρ ( m , n ) > ρ o exp ( i φ o ( m , n ) ) , ρ ( m , n ) < ρ o ,
R ( m , n ) = { exp ( i φ r ( m , n ) ) , ρ ( m , n ) > ρ o 0 , ρ ( m , n ) < ρ o , O ( m , n ) = { 0 , ρ ( m , n ) > ρ o exp ( i φ o ( m , n ) ) , ρ ( m , n ) < ρ o .
U ( μ , ν ) = | F { R ( m , n ) + O ( m , n ) } f ( μ , ν ) | 2 = | R ( μ , ν ) f ( μ , ν ) + O ( μ , ν ) f ( μ , ν ) | 2 ,

Metrics