Abstract

Absorption of CW Yb-fiber laser light of 1.07μm wavelength in water has been measured at different water temperatures and laser intensities. The absorption coefficient was estimated to be 0.135cm1 at 25°C water temperature, and this was found to decrease with temperature at a rate of 5.7×104cm1°C1. The absorption coefficient increased significantly when the laser beam was focused in water, and the increase depended on the distance of the focal point from the water surface. This has been attributed to the absorption and scattering losses of laser radiation in a cavity formed in water by the focused beam at laser intensities in the megawatts per square centimeter and higher range.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
    [CrossRef]
  2. C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209, 2838–2846 (2009).
    [CrossRef]
  3. Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
    [CrossRef]
  4. R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
    [CrossRef]
  5. B. Richerzhagen, R. Housh, F. Wagner, and J. Manley, “Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving,” in Proceedings of the 2004 Advanced Laser Applications Conference and Exposition, D.Roessler and N.Uddin, eds. (ALAC, 2004), pp. 175–181.
  6. J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, and S. Füger, “Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence,” Int. J. Adv. Manuf. Technol. 33, 961–967 (2007).
    [CrossRef]
  7. A. DuPont, P. Caminat, and P. Bournot, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78, 2022–2028 (1995).
    [CrossRef]
  8. M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water,” Appl. Surf. Sci. 256, 1778–1783(2010).
    [CrossRef]
  9. B. P. Fairand and A. H. Clauer, “Use of laser-generated shocks to improve the properties of metals and alloys,” Proc. SPIE 86, 112–119 (1977).
  10. L. A. Hackel and H. L. Chen, “Laser peening—a processing tool to strengthen metals and alloys,” ID: 15005261, Lawrence Livermore National Lab, CA (U.S. Department of Energy, Office of Science and Technology, 2003).
  11. A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
    [CrossRef]
  12. A. Kruusing, “Underwater and water-assisted laser processing: part 2—etching, cutting and rarely used methods,” Opt. Lasers Eng. 41, 329–352 (2004).
    [CrossRef]
  13. J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
    [CrossRef]
  14. J. Curcio and C. Petty, “The near infrared absorption spectrum of liquid water,” J. Opt. Soc. Am. 41, 302–304 (1951).
    [CrossRef]
  15. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64, 1107–1110 (1974).
    [CrossRef]
  16. B. I. Lange, T. Brendel, and G. Huttmann, “Temperature dependent of light absorption in water at holmium and thulium laser wavelengths,” Appl. Opt. 41, 5797–5803(2002).
    [CrossRef] [PubMed]
  17. B. C. Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vibr. Spectrosc. 40, 235–245 (2006).
    [CrossRef]
  18. D. Theisen-Kunde, V. Danicke, M. Wendt, and R. Brinkmann, “Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm,” IFMBE Proc. 22, 2228–2229 (2009).
    [CrossRef]
  19. Y. A. Bykovskii, D. V. Klotchkov, V. B. Oshurko, and A. A. Chistyakov, “Nonlinear processes in liquid water under infrared laser radiation resonant for H2O molecules,” Laser Phys. 8, 172–175 (1998).
  20. A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
    [CrossRef]
  21. S. A. Hosseini, A. Sharan, and D. Goswami, “High sensitive measurement of absorption coefficient and optical nonlinearities with a single experimental setup,” arxiv.org/pdf/physics/0201009 (2002).
  22. G. W. Robinson, C. H. Cho, and J. Urquidi, “Isosbestic points in liquid water: further strong evidence for the two-state mixture model,” J. Chem. Phys. 111, 698–702 (1999).
    [CrossRef]
  23. www.maxmax.com/spectral_response.htm.
  24. H. H. Blau Jr., D. J. McCleese, and D. Watson, “Scattering by individual transparent spheres,” Appl. Opt. 9, 2522–2528(1970).
    [CrossRef] [PubMed]
  25. J. V. Dave, “Scattering of visible light by large water spheres,” Appl. Opt. 8, 155–164 (1969).
    [CrossRef] [PubMed]
  26. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).
  27. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [CrossRef] [PubMed]

2010

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water,” Appl. Surf. Sci. 256, 1778–1783(2010).
[CrossRef]

2009

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209, 2838–2846 (2009).
[CrossRef]

D. Theisen-Kunde, V. Danicke, M. Wendt, and R. Brinkmann, “Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm,” IFMBE Proc. 22, 2228–2229 (2009).
[CrossRef]

2008

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

2007

J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, and S. Füger, “Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence,” Int. J. Adv. Manuf. Technol. 33, 961–967 (2007).
[CrossRef]

2006

B. C. Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vibr. Spectrosc. 40, 235–245 (2006).
[CrossRef]

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

2004

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
[CrossRef]

A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
[CrossRef]

A. Kruusing, “Underwater and water-assisted laser processing: part 2—etching, cutting and rarely used methods,” Opt. Lasers Eng. 41, 329–352 (2004).
[CrossRef]

2002

1999

G. W. Robinson, C. H. Cho, and J. Urquidi, “Isosbestic points in liquid water: further strong evidence for the two-state mixture model,” J. Chem. Phys. 111, 698–702 (1999).
[CrossRef]

1998

Y. A. Bykovskii, D. V. Klotchkov, V. B. Oshurko, and A. A. Chistyakov, “Nonlinear processes in liquid water under infrared laser radiation resonant for H2O molecules,” Laser Phys. 8, 172–175 (1998).

1995

A. DuPont, P. Caminat, and P. Bournot, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78, 2022–2028 (1995).
[CrossRef]

1980

1977

B. P. Fairand and A. H. Clauer, “Use of laser-generated shocks to improve the properties of metals and alloys,” Proc. SPIE 86, 112–119 (1977).

1974

1970

1969

1951

1925

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Agrawal, D. K.

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

Blau, H. H.

Bournot, P.

A. DuPont, P. Caminat, and P. Bournot, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78, 2022–2028 (1995).
[CrossRef]

Brendel, T.

Brinkmann, R.

D. Theisen-Kunde, V. Danicke, M. Wendt, and R. Brinkmann, “Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm,” IFMBE Proc. 22, 2228–2229 (2009).
[CrossRef]

Bykovskii, Y. A.

Y. A. Bykovskii, D. V. Klotchkov, V. B. Oshurko, and A. A. Chistyakov, “Nonlinear processes in liquid water under infrared laser radiation resonant for H2O molecules,” Laser Phys. 8, 172–175 (1998).

Caminat, P.

A. DuPont, P. Caminat, and P. Bournot, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78, 2022–2028 (1995).
[CrossRef]

Chen, H. L.

L. A. Hackel and H. L. Chen, “Laser peening—a processing tool to strengthen metals and alloys,” ID: 15005261, Lawrence Livermore National Lab, CA (U.S. Department of Energy, Office of Science and Technology, 2003).

Chen, X.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
[CrossRef]

Chistyakov, A. A.

Y. A. Bykovskii, D. V. Klotchkov, V. B. Oshurko, and A. A. Chistyakov, “Nonlinear processes in liquid water under infrared laser radiation resonant for H2O molecules,” Laser Phys. 8, 172–175 (1998).

Cho, C. H.

G. W. Robinson, C. H. Cho, and J. Urquidi, “Isosbestic points in liquid water: further strong evidence for the two-state mixture model,” J. Chem. Phys. 111, 698–702 (1999).
[CrossRef]

Choubey, A. K.

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

Clauer, A. H.

B. P. Fairand and A. H. Clauer, “Use of laser-generated shocks to improve the properties of metals and alloys,” Proc. SPIE 86, 112–119 (1977).

Collins, J. R.

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Couairon, A.

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

Curcio, J.

Danicke, V.

D. Theisen-Kunde, V. Danicke, M. Wendt, and R. Brinkmann, “Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm,” IFMBE Proc. 22, 2228–2229 (2009).
[CrossRef]

Dave, J. V.

Dubietis, A.

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

DuPont, A.

A. DuPont, P. Caminat, and P. Bournot, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78, 2022–2028 (1995).
[CrossRef]

Faccio, D.

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

Fairand, B. P.

B. P. Fairand and A. H. Clauer, “Use of laser-generated shocks to improve the properties of metals and alloys,” Proc. SPIE 86, 112–119 (1977).

Füger, S.

J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, and S. Füger, “Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence,” Int. J. Adv. Manuf. Technol. 33, 961–967 (2007).
[CrossRef]

Goswami, D.

S. A. Hosseini, A. Sharan, and D. Goswami, “High sensitive measurement of absorption coefficient and optical nonlinearities with a single experimental setup,” arxiv.org/pdf/physics/0201009 (2002).

Hackel, L. A.

L. A. Hackel and H. L. Chen, “Laser peening—a processing tool to strengthen metals and alloys,” ID: 15005261, Lawrence Livermore National Lab, CA (U.S. Department of Energy, Office of Science and Technology, 2003).

Hosseini, S. A.

S. A. Hosseini, A. Sharan, and D. Goswami, “High sensitive measurement of absorption coefficient and optical nonlinearities with a single experimental setup,” arxiv.org/pdf/physics/0201009 (2002).

Housh, R.

B. Richerzhagen, R. Housh, F. Wagner, and J. Manley, “Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving,” in Proceedings of the 2004 Advanced Laser Applications Conference and Exposition, D.Roessler and N.Uddin, eds. (ALAC, 2004), pp. 175–181.

Huttmann, G.

Jain, R. K.

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

Karjalainen, J. A.

J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, and S. Füger, “Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence,” Int. J. Adv. Manuf. Technol. 33, 961–967 (2007).
[CrossRef]

Kato, H.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Klotchkov, D. V.

Y. A. Bykovskii, D. V. Klotchkov, V. B. Oshurko, and A. A. Chistyakov, “Nonlinear processes in liquid water under infrared laser radiation resonant for H2O molecules,” Laser Phys. 8, 172–175 (1998).

Kruusing, A.

A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
[CrossRef]

A. Kruusing, “Underwater and water-assisted laser processing: part 2—etching, cutting and rarely used methods,” Opt. Lasers Eng. 41, 329–352 (2004).
[CrossRef]

Kucinskas, E.

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

Lange, B. I.

Li, C. C.

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209, 2838–2846 (2009).
[CrossRef]

Louhisalmi, Y. A.

J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, and S. Füger, “Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence,” Int. J. Adv. Manuf. Technol. 33, 961–967 (2007).
[CrossRef]

Lu, J.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
[CrossRef]

Mahdieh, M. H.

M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water,” Appl. Surf. Sci. 256, 1778–1783(2010).
[CrossRef]

Makino, Y.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Manley, J.

B. Richerzhagen, R. Housh, F. Wagner, and J. Manley, “Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving,” in Proceedings of the 2004 Advanced Laser Applications Conference and Exposition, D.Roessler and N.Uddin, eds. (ALAC, 2004), pp. 175–181.

Matusewicz, B. C.

B. C. Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vibr. Spectrosc. 40, 235–245 (2006).
[CrossRef]

McCleese, D. J.

Moghadam, Z. E.

M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water,” Appl. Surf. Sci. 256, 1778–1783(2010).
[CrossRef]

Mukai, N.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Ni, X. W.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
[CrossRef]

Nikbakht, M.

M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water,” Appl. Surf. Sci. 256, 1778–1783(2010).
[CrossRef]

Oak, S. M.

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

Obata, M.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Oshurko, V. B.

Y. A. Bykovskii, D. V. Klotchkov, V. B. Oshurko, and A. A. Chistyakov, “Nonlinear processes in liquid water under infrared laser radiation resonant for H2O molecules,” Laser Phys. 8, 172–175 (1998).

Palmer, K. F.

Petty, C.

Pilorz, S.

B. C. Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vibr. Spectrosc. 40, 235–245 (2006).
[CrossRef]

Porter, J. A.

J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, and S. Füger, “Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence,” Int. J. Adv. Manuf. Technol. 33, 961–967 (2007).
[CrossRef]

Richerzhagen, B.

B. Richerzhagen, R. Housh, F. Wagner, and J. Manley, “Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving,” in Proceedings of the 2004 Advanced Laser Applications Conference and Exposition, D.Roessler and N.Uddin, eds. (ALAC, 2004), pp. 175–181.

Robinson, G. W.

G. W. Robinson, C. H. Cho, and J. Urquidi, “Isosbestic points in liquid water: further strong evidence for the two-state mixture model,” J. Chem. Phys. 111, 698–702 (1999).
[CrossRef]

Sano, Y.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Sauskas, G. T.

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

Sharan, A.

S. A. Hosseini, A. Sharan, and D. Goswami, “High sensitive measurement of absorption coefficient and optical nonlinearities with a single experimental setup,” arxiv.org/pdf/physics/0201009 (2002).

Shen, Z. H.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
[CrossRef]

Shima, S.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Sobhani, M.

M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water,” Appl. Surf. Sci. 256, 1778–1783(2010).
[CrossRef]

Tamura, M.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Theisen-Kunde, D.

D. Theisen-Kunde, V. Danicke, M. Wendt, and R. Brinkmann, “Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm,” IFMBE Proc. 22, 2228–2229 (2009).
[CrossRef]

Trapani, P. D.

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

Tsai, C. H.

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209, 2838–2846 (2009).
[CrossRef]

Upadhyaya, B. N.

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

Urquidi, J.

G. W. Robinson, C. H. Cho, and J. Urquidi, “Isosbestic points in liquid water: further strong evidence for the two-state mixture model,” J. Chem. Phys. 111, 698–702 (1999).
[CrossRef]

Vishwakarma, S. C.

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

Wagner, F.

B. Richerzhagen, R. Housh, F. Wagner, and J. Manley, “Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving,” in Proceedings of the 2004 Advanced Laser Applications Conference and Exposition, D.Roessler and N.Uddin, eds. (ALAC, 2004), pp. 175–181.

Watson, D.

Wendt, M.

D. Theisen-Kunde, V. Danicke, M. Wendt, and R. Brinkmann, “Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm,” IFMBE Proc. 22, 2228–2229 (2009).
[CrossRef]

Williams, D.

Wiscombe, W. J.

Xu, R. Q.

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
[CrossRef]

Yoda, M.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Zauskas, E. G.

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

Appl. Opt.

Appl. Phys. B

A. Dubietis, A. Couairon, E. Kucinskas, G. T. Sauskas, E. G. Zauskas, D. Faccio, and P. D. Trapani, “Measurement and calculation of nonlinear absorption associated with femtosecond filaments in water,” Appl. Phys. B 84, 439–446(2006)
[CrossRef]

Appl. Surf. Sci.

M. H. Mahdieh, M. Nikbakht, Z. E. Moghadam, and M. Sobhani, “Crater geometry characterization of Al targets irradiated by single pulse and pulse trains of Nd: YAG laser in ambient air and water,” Appl. Surf. Sci. 256, 1778–1783(2010).
[CrossRef]

IFMBE Proc.

D. Theisen-Kunde, V. Danicke, M. Wendt, and R. Brinkmann, “Temperature dependence of water absorption for wavelengths at 1920 nm and 1940 nm,” IFMBE Proc. 22, 2228–2229 (2009).
[CrossRef]

Int. J. Adv. Manuf. Technol.

J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, and S. Füger, “Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence,” Int. J. Adv. Manuf. Technol. 33, 961–967 (2007).
[CrossRef]

J. Appl. Phys.

A. DuPont, P. Caminat, and P. Bournot, “Enhancement of material ablation using 248, 308, 532, 1064 nm laser pulse with a water film on the treated surface,” J. Appl. Phys. 78, 2022–2028 (1995).
[CrossRef]

J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, and X. W. Ni, “Mechanisms of laser drilling of metal plates underwater,” J. Appl. Phys. 95, 3890–3894 (2004).
[CrossRef]

J. Chem. Phys.

G. W. Robinson, C. H. Cho, and J. Urquidi, “Isosbestic points in liquid water: further strong evidence for the two-state mixture model,” J. Chem. Phys. 111, 698–702 (1999).
[CrossRef]

J. Mater. Process. Technol.

C. H. Tsai and C. C. Li, “Investigation of underwater laser drilling for brittle substrates,” J. Mater. Process. Technol. 209, 2838–2846 (2009).
[CrossRef]

J. Opt. Soc. Am.

Laser Phys.

Y. A. Bykovskii, D. V. Klotchkov, V. B. Oshurko, and A. A. Chistyakov, “Nonlinear processes in liquid water under infrared laser radiation resonant for H2O molecules,” Laser Phys. 8, 172–175 (1998).

Opt. Lasers Eng.

A. Kruusing, “Underwater and water-assisted laser processing: part 1—general features, steam cleaning and shock processing,” Opt. Lasers Eng. 41, 307–327 (2004).
[CrossRef]

A. Kruusing, “Underwater and water-assisted laser processing: part 2—etching, cutting and rarely used methods,” Opt. Lasers Eng. 41, 329–352 (2004).
[CrossRef]

Phys. Rev.

J. R. Collins, “Change in the infra-red absorption spectrum of water with temperature,” Phys. Rev. 26, 771–779 (1925).
[CrossRef]

Pramana

R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya, and S. M. Oak, “Development of underwater laser cutting technique for steel and zircaloy for nuclear applications,” Pramana 75, 1253–1258 (2010).
[CrossRef]

Proc. SPIE

B. P. Fairand and A. H. Clauer, “Use of laser-generated shocks to improve the properties of metals and alloys,” Proc. SPIE 86, 112–119 (1977).

Rev. Laser Eng.

Y. Sano, N. Mukai, Y. Makino, M. Tamura, M. Obata, M. Yoda, S. Shima, and H. Kato, “Enhancement of surface properties of metal materials by underwater laser processing,” Rev. Laser Eng. 36, 1195–1198 (2008).
[CrossRef]

Vibr. Spectrosc.

B. C. Matusewicz and S. Pilorz, “Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis,” Vibr. Spectrosc. 40, 235–245 (2006).
[CrossRef]

Other

S. A. Hosseini, A. Sharan, and D. Goswami, “High sensitive measurement of absorption coefficient and optical nonlinearities with a single experimental setup,” arxiv.org/pdf/physics/0201009 (2002).

B. Richerzhagen, R. Housh, F. Wagner, and J. Manley, “Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving,” in Proceedings of the 2004 Advanced Laser Applications Conference and Exposition, D.Roessler and N.Uddin, eds. (ALAC, 2004), pp. 175–181.

L. A. Hackel and H. L. Chen, “Laser peening—a processing tool to strengthen metals and alloys,” ID: 15005261, Lawrence Livermore National Lab, CA (U.S. Department of Energy, Office of Science and Technology, 2003).

www.maxmax.com/spectral_response.htm.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup to measure the transmitted laser beam through water in (a) unfocused and (b) focused beam conditions.

Fig. 2
Fig. 2

Variation of laser absorption in water and absorption coefficient with water column height for different laser powers.

Fig. 3
Fig. 3

Variation in absorption coefficient with water temperature. Water column height = 40 mm ; laser power = 345 W ; Eq. (3) (linear curve fitting), α = ( 0.308 5.7 × 10 4 T ) cm 1 ; Eq. (4) (semiempirical), α = 52.8 / [ T ( 1 + exp ( 360 / T ) ] cm 1 .

Fig. 4
Fig. 4

Schematic of laser beam propagation through water in unfocused and focused conditions.

Fig. 5
Fig. 5

Variation of the absorption coefficient with laser power for unfocused and focused laser beams with location of focal point below the water level (a)  5 mm , (b)  15 mm .

Fig. 6
Fig. 6

Variation of the absorption coefficient with water column height for unfocused and focused laser beams: laser power (a)  500 W , (b)  800 W .

Fig. 7
Fig. 7

Cavity images taken by CMOS digital camera at a laser power of 500 W , with location of focal point below the water level (a)  5 mm , (b)  15 mm .

Fig. 8
Fig. 8

Cavity images taken by CMOS digital camera at a power of 1085 W , with location of focal point below the water level (a)  5 mm , (b)  15 mm .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A = ( P in P 0 ) / P in .
P 0 = P in exp ( α 1 ) .
α = ( 0.308 5.7 × 10 4 T ) cm 1 ,
α = C / [ T ( 1 + exp ( B / T ) ] ,
α = ( α 1 N 1 + α 2 N 2 ) / ( N 1 + N 2 ) .
α = [ α 1 + α 2 exp ( D / T ) ] / [ 1 + exp ( D / T ) ] ,
α = α L + α N ( I + s 1 L 0 L I z d z ) .
I z = P z / ( π w z 2 ) ,
P z = P 0 exp ( α z ) ,
where     w z 0 2 = w 0 2 [ 1 + ( z 0 / z r ) 2 ] and z r = π w 0 2 / ( M 2 λ ) .
α = α L + β P 0 / π w s 2 + γ P 0 [ tan 1 ( M 2 λ L 1 / π w 0 2 ) + tan 1 ( M 2 λ L 2 / π w 0 2 ) ] / π L w 0 2 ,

Metrics