Abstract

We demonstrate microrings assembled with polyacrylamide (PAM) microfibers for high-sensitivity relative humidity (RH) sensing. When exposed to moisture, the PAM microfiber absorbs water molecules and inflates monotonically with the increasing humidity, resulting in evident spectral shifts of the resonance peaks of the microring. By measuring the spectral shifts, the microring shows sensitivity as high as 490pm/%RH and a response time of about 120ms, within a dynamic range from 5% to 71% RH.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fibre sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
    [CrossRef]
  2. C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
    [CrossRef]
  3. L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353(2008).
    [CrossRef] [PubMed]
  4. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
    [CrossRef] [PubMed]
  5. S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
    [CrossRef]
  6. B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B 80, 132–135 (2001).
    [CrossRef]
  7. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222(2005).
    [CrossRef]
  8. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27, 1385–1387 (2002).
    [CrossRef]
  9. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
    [CrossRef]
  10. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45, 4567–4571 (2006).
    [CrossRef] [PubMed]
  11. Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
    [CrossRef]
  12. B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
    [CrossRef]
  13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The microfiber loop resonator: theory, experiment, and application,” J. Lightwave Technol. 24, 242–250(2006).
    [CrossRef]
  14. F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
    [CrossRef] [PubMed]
  15. F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
    [CrossRef]
  16. X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
    [CrossRef] [PubMed]
  17. Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
    [CrossRef] [PubMed]
  18. Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
    [CrossRef]
  19. S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
    [CrossRef]
  20. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [CrossRef] [PubMed]
  21. R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
    [CrossRef] [PubMed]

2011

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

2009

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[CrossRef]

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
[CrossRef] [PubMed]

2008

2007

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

2006

2005

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222(2005).
[CrossRef]

2004

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

2003

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

2002

2001

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B 80, 132–135 (2001).
[CrossRef]

2000

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

1998

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fibre sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Adachi, K.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Arregui, F. J.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Bariain, C.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Barry, R. A.

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
[CrossRef] [PubMed]

Barton, J. S.

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fibre sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Berry, S. M.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

Bhola, B.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[CrossRef]

Bownass, D. C.

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fibre sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Brambilla, G.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef] [PubMed]

Cambron, S. D.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

Chen, Y. H.

Cohn, R. W.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

Crain, M. M.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

DiGiovanni, D. J.

Dulashko, Y.

Finazzi, V.

Fini, J. M.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Giaccari, P.

Gong, Y.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
[CrossRef] [PubMed]

Grattan, K. T. V.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

Gu, F. X.

Guo, X.

Gupta, B. D.

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B 80, 132–135 (2001).
[CrossRef]

Hale, A.

Harfenist, S. A.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Isham, A. W.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

Jones, J. D. C.

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fibre sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Keynton, R. S.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

Khijwania, S. K.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222(2005).
[CrossRef]

Konstantaki, M.

Kronenberg, P.

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

Liao, Y. B.

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

Limberger, H. G.

Liu, Y.

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

Lopez-Amo, M.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Lou, J. Y.

L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353(2008).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Madamopoulos, N.

Mahalingam, H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[CrossRef]

Mao, X. H.

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

Matias, I. R.

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Nelson, E. W.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

Nosovitskiy, P.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[CrossRef]

Otsuki, S.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

Pispas, S.

Pissadakis, S.

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

Pruneri, V.

Rao, Y. J.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
[CrossRef] [PubMed]

Rastogi, P. K.

Ratnanjali,

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B 80, 132–135 (2001).
[CrossRef]

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Singh, J. P.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222(2005).
[CrossRef]

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222(2005).
[CrossRef]

Steier, W. H.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[CrossRef]

Sumetsky, M.

Sun, T.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

Taguchi, T.

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

Tong, L. M.

L. Zhang, F. X. Gu, J. Y. Lou, X. F. Yin, and L. M. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353(2008).
[CrossRef] [PubMed]

X. Guo and L. M. Tong, “Supported microfiber loops for optical sensing,” Opt. Express 16, 14429–14434 (2008).
[CrossRef] [PubMed]

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Tu, D. S.

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

Vainos, N. A.

Walsh, K. M.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

Wang, L. W.

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

Wiltzius, P.

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
[CrossRef] [PubMed]

Wu, Y.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Y. Wu, Y. J. Rao, Y. H. Chen, and Y. Gong, “Miniature fiber optic temperature sensors based on silica/polymer microfiber knot resonators,” Opt. Express 17, 18142–18147 (2009).
[CrossRef] [PubMed]

Xu, F.

F. Xu, V. Pruneri, V. Finazzi, and G. Brambilla, “An embedded optical nanowire loop resonator refractometric sensor,” Opt. Express 16, 1062–1067 (2008).
[CrossRef] [PubMed]

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

Yeo, T. L.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

Yin, X. F.

Zhang, L.

Zhang, M.

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

Zhang, T. H.

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Xu and G. Brambilla, “Demonstration of a refractometric sensor based on optical microfiber coil resonator,” Appl. Phys. Lett. 92, 101126 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Liu, L. W. Wang, M. Zhang, D. S. Tu, X. H. Mao, and Y. B. Liao, “Long-period grating relative humidity sensor with hydrogel coating,” IEEE Photon. Technol. Lett. 19, 880–882(2007).
[CrossRef]

IEEE Sens. J.

B. Bhola, P. Nosovitskiy, H. Mahalingam, and W. H. Steier, “Sol-gel-based integrated optical microring resonator humidity sensor,” IEEE Sens. J. 9, 740–747 (2009).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5, 1082–1089 (2005).
[CrossRef]

J. Lightwave Technol.

Langmuir

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
[CrossRef] [PubMed]

Nano Lett.

S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro-and nanostructures from liquid polymers,” Nano Lett. 4, 1931–1937 (2004).
[CrossRef]

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8, 2757–2761 (2008).
[CrossRef] [PubMed]

Nature

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun.

D. C. Bownass, J. S. Barton, and J. D. C. Jones, “Detection of high humidity by optical fibre sensing at telecommunications wavelengths,” Opt. Commun. 146, 90–94 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B

C. Bariain, I. R. Matias, F. J. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuators B 69, 127–131 (2000).
[CrossRef]

Y. Wu, T. H. Zhang, Y. J. Rao, and Y. Gong, “Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators,” Sens. Actuators B 155, 258–263 (2011).
[CrossRef]

S. Otsuki, K. Adachi, and T. Taguchi, “A novel fiber-optic gas-sensing configuration using extremely curved optical fibers and an attempt for optical humidity detection,” Sens. Actuators B 53, 91–96 (1998).
[CrossRef]

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sens. Actuators B 80, 132–135 (2001).
[CrossRef]

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuators B 104, 217–222(2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of a PAM microring for humidity sensing. (b) Optical microscope image of a 217 μm diameter MgF 2 -supported PAM microring assembled with a 2.7 μm diameter PAM microfiber. A 532 nm wavelength light is launched into the microring from the left side.

Fig. 2
Fig. 2

Typical transmission spectrum of a 217 μm diameter microring assembled using a 2.7 μm diameter PAM microfiber.

Fig. 3
Fig. 3

Redshift of resonance peaks when the microring is exposed to 17%, 17.9%, and 18.9% RH, respectively.

Fig. 4
Fig. 4

(a) Resonance wavelength as a function of RH for increasing and decreasing RH cycles. (b) Typical time- dependent transmittance of the microring at 1550 nm wavelength when the RH jumps from 28.2% to 30.4%. Inset, reversible response of the sensor obtained by alternately cycling 28.2% and 30.4% RH air.

Metrics