Abstract

The optical properties of metal nanoparticle (NP)-coated silicon nanowires (Si NWs) are theoretically investigated using COMSOL Multiphysics commercial software. A geometrical array of periodic Si NWs coated with metal NPs is proposed. The simulation demonstrates that light absorption could be enhanced significantly in a long wavelength region of the solar spectrum, based upon the localized surface plasmons generated around metal NPs. Various metal NPs, such as Au, Ag, and Al, are all found to increase their light absorption while in contact with Si NWs, in which the Au NPs show the best result in light enhancement. This theoretical work might prove useful in providing a fundamental understanding toward improving further the efficiency of Si wired solar cells.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
    [CrossRef] [PubMed]
  2. Z, Yu, A, Raman, and S, Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
    [CrossRef] [PubMed]
  3. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
    [CrossRef] [PubMed]
  4. J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
    [CrossRef]
  5. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009).
    [CrossRef] [PubMed]
  6. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
    [CrossRef]
  7. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
    [CrossRef]
  8. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817(1998).
    [CrossRef]
  9. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
    [CrossRef]
  11. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
    [CrossRef]
  12. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113(2008).
    [CrossRef]
  13. C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
    [CrossRef]
  14. F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–A220 (2010).
    [CrossRef] [PubMed]
  15. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
    [CrossRef] [PubMed]
  16. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons” J. Appl. Phys. 104, 123102 (2008).
    [CrossRef]
  17. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
    [CrossRef]
  18. G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids I(Academic, 1985).

2011 (1)

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

2010 (5)

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

Z, Yu, A, Raman, and S, Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef] [PubMed]

F.-J. Tsai, J.-Y. Wang, J.-J. Huang, Y.-W. Kiang, and C. C. Yang, “Absorption enhancement of an amorphous Si solar cell through surface plasmon-induced scattering with metal nanoparticles,” Opt. Express 18, A207–A220 (2010).
[CrossRef] [PubMed]

2009 (2)

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009).
[CrossRef] [PubMed]

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

2008 (3)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113(2008).
[CrossRef]

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

2007 (3)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

2005 (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

1998 (1)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817(1998).
[CrossRef]

1996 (1)

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Bianco, G. V.

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

Black, L.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

Bruno, G.

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

Capezzuto, P.

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113(2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

de Waele, R.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

Derkacs, D.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Fahr, S.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Fan, S,

Z, Yu, A, Raman, and S, Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

Giangregorio, M. M.

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817(1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Hebbink, M.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

Huang, J.-J.

Kiang, Y.-W.

Kwong, D.-L.

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

Lederer, F.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Lenzmann, F.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

Li, J.

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

Li, X.

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

Lim, S. H.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Lin, C.

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009).
[CrossRef] [PubMed]

Lo, P. G.

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

Losurdo, M.

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

Mar, W.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Matheu, P.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids I(Academic, 1985).

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Polman, A.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113(2008).
[CrossRef]

Povinelli, M. L.

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381(2009).
[CrossRef] [PubMed]

Raman, A,

Z, Yu, A, Raman, and S, Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

Sacchetti, A.

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Spinelli, P.

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817(1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

Tsai, F.-J.

Wang, J.-Y.

Wong, S. M.

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

Yang, C. C.

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

Yu, E. T.

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Yu, H.-Y.

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

Yu, Z,

Z, Yu, A, Raman, and S, Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Zhang, G.

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

Appl. Phys. Lett. (7)

J. Li, H.-Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett. 95, 243113(2009).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817(1998).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113(2008).
[CrossRef]

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett. 97, 071110 (2010).
[CrossRef]

G. Bruno, G. V. Bianco, M. M. Giangregorio, A. Sacchetti, P. Capezzuto, and M. Losurdo, “A two-step plasma processing for gold nanoparticles supported on silicon near-infrared plasmonics,” Appl. Phys. Lett. 96, 043104 (2010).
[CrossRef]

J. Appl. Phys. (3)

C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons” J. Appl. Phys. 104, 123102 (2008).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101, 093105 (2007).
[CrossRef]

S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, “Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles,” J. Appl. Phys. 101, 104309(2007).
[CrossRef]

Nano Lett. (4)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008).
[CrossRef]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007).
[CrossRef] [PubMed]

P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett. 11, 1760–1765(2011).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314(2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

Z, Yu, A, Raman, and S, Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010).
[CrossRef] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids I(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Left: schematic of metal NPs coated on Si NWs. Right: a half of the unit cell of a solar cell structure used for simulation in COMSOL Multiphysics.

Fig. 2
Fig. 2

Left: absorptance spectrum of a Si film with a thickness L = 2330 nm (black dotted curve), Si NWs with wire length L = 2330 nm , wire width d = 120 nm , period a = 200 nm (red solid curve), and Au NPs coated on Si NWs with a NP size d Au = 20 nm , a pitch h Au = 200 nm (blue solid curve). Right: light distribution around the first five Au NPs at wavelengths (a) 400, (b) 938, and (c)  1090 nm and corresponding light distribution around the second Au NP for the three wavelengths.

Fig. 3
Fig. 3

Optical properties of the Au NPs coated on Si NWs. In the left column, (a), (b), and (c) are the reflectance, transmittance, and absorptance, respectively, for different sizes of Au NPs. The optical properties of a Si NWs without Au NPs are plotted as dotted curves for comparison. In the right column, (d), (e), and (f) are the reflectance, transmittance, and absorptance, respectively, for different pitches between the Au NPs. The Si NWs all have a length of 2330 nm , a width of 120 nm , and a period of 200 nm .

Fig. 4
Fig. 4

Optical properties of Au (blue), Ag (red), and Al (cyan) NPs coated on Si NWs. Panels (a), (b), and (c) are the reflectance, transmittance, and absorptance, respectively. The optical properties of Si NWs without metal NPs are plotted as dotted curves for comparison. The Si NWs all have a length of 2330 nm , a width of 120 nm , and a period of 200 nm . The diameter and pitch of the metal NPs are d = 20 nm and h = 200 nm , respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = 310 nm λ g I ( λ ) A ( λ ) λ λ g d λ 310 nm 4000 nm I ( λ ) d λ ,

Metrics