Abstract

Silver and gold films with thicknesses in the range of 120–450nm were evaporated onto glass substrates. A sequence of slits with widths varying between 70 and 270nm was milled in the films using a focused gallium ion beam. We have undertaken high-resolution measurements of the optical transmission through the single slits with 488.0nm (for Ag) and 632.8nm (for Au) laser sources aligned to the optical axis of a microscope. Based on the present experimental results, it was possible to observe that (1) the slit transmission is notably affected by the film thickness, which presents a damped oscillatory behavior as the thickness is augmented, and (2) the transmission increases linearly with increasing slit width for a fixed film thickness.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010).
    [CrossRef] [PubMed]
  3. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
    [CrossRef]
  4. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  5. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
    [CrossRef] [PubMed]
  6. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film,” Opt. Express 13, 4485–4491 (2005).
    [CrossRef] [PubMed]
  7. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
    [CrossRef] [PubMed]
  8. G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
    [CrossRef] [PubMed]
  9. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
    [CrossRef]
  10. F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, “Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films,” Opt. Express 15, 2613–2621 (2007).
    [CrossRef] [PubMed]
  11. D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
    [CrossRef]
  12. E. Fontana, “Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media,” Appl. Opt. 45, 7632–7642 (2006).
    [CrossRef] [PubMed]
  13. O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14, 11823–11832 (2006).
    [CrossRef] [PubMed]
  14. X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13, 9834–9840 (2005).
    [CrossRef] [PubMed]
  15. J. H. Kim and P. J. Moyer, “Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,” Opt. Express 14, 6595–6603 (2006).
    [CrossRef] [PubMed]
  16. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
    [CrossRef]
  17. J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014(2008).
    [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  19. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  20. Comsol Multiphysics, http://www.comsol.com.
  21. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef] [PubMed]
  22. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
    [CrossRef]
  23. J. Weiner, “The electromagnetics of light transmission through subwavelength slits in metallic films,” Opt. Express 19, 16139–16153 (2011).
    [CrossRef] [PubMed]
  24. Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
    [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
  26. L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
    [CrossRef] [PubMed]
  27. H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
    [CrossRef]

2011

J. Weiner, “The electromagnetics of light transmission through subwavelength slits in metallic films,” Opt. Express 19, 16139–16153 (2011).
[CrossRef] [PubMed]

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef] [PubMed]

2010

E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010).
[CrossRef] [PubMed]

2009

Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
[CrossRef]

2008

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014(2008).
[CrossRef]

H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

2007

2006

J. H. Kim and P. J. Moyer, “Thickness effects on the optical transmission characteristics of small hole arrays on thin gold films,” Opt. Express 14, 6595–6603 (2006).
[CrossRef] [PubMed]

E. Fontana, “Thickness optimization of metal films for the development of surface-plasmon-based sensors for nonabsorbing media,” Appl. Opt. 45, 7632–7642 (2006).
[CrossRef] [PubMed]

O. T. A. Janssen, H. P. Urbach, and G. W. Hooft, “On the phase of plasmons excited by slits in a metal film,” Opt. Express 14, 11823–11832 (2006).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

2005

2004

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

2002

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

2001

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Agrawal, A.

Alloschery, O.

F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, “Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films,” Opt. Express 15, 2613–2621 (2007).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

Atwater, H. A.

E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Chang, C.-P.

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Drezet, A.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014(2008).
[CrossRef]

Ebbesen, T. W.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014(2008).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Feigenbaum, E.

E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010).
[CrossRef] [PubMed]

Fontana, E.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Gay, G.

F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, “Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films,” Opt. Express 15, 2613–2621 (2007).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
[CrossRef] [PubMed]

Genet, C.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014(2008).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Hooft, G. W.

Janssen, O. T. A.

Kalkum, F.

Kang, J. H.

H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kihm, H. W.

H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kim, J. H.

Kima, D. S.

H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Kong, X.-T.

Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
[CrossRef]

Laluet, J.-Y.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014(2008).
[CrossRef]

Lee, K. G.

H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Lezec, H. J.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, “Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films,” Opt. Express 15, 2613–2621 (2007).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
[CrossRef] [PubMed]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Li, Z.-B.

Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Mansuripur, M.

Martin-Moreno, L.

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Moloney, J. V.

Moyer, P. J.

Nahata, A.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

O’Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

Pacifici, D.

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Park, Q.-H.

H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Shou, X.

Shyu, L.-H.

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef] [PubMed]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12, 3629–3651 (2004).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Tian, J.-G.

Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
[CrossRef]

Urbach, H. P.

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

Wang, Y.-C.

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef] [PubMed]

Weiner, J.

J. Weiner, “The electromagnetics of light transmission through subwavelength slits in metallic films,” Opt. Express 19, 16139–16153 (2011).
[CrossRef] [PubMed]

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, “Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films,” Opt. Express 15, 2613–2621 (2007).
[CrossRef] [PubMed]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
[CrossRef] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Wolf, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

Xie, Y.

Yang, Y.-H.

Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
[CrossRef]

Zakharian, A. R.

Zhou, W.-Y.

Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. W. Kihm, K. G. Lee, D. S. Kima, J. H. Kang, and Q.-H. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett. 92, 051115 (2008).
[CrossRef]

J. Opt. A

Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou, and J.-G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A 11, 105002 (2009).
[CrossRef]

Nat. Phys.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2, 262–267 (2006).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998).
[CrossRef]

New J. Phys.

J.-Y. Laluet, A. Drezet, C. Genet, and T. W. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys. 10, 105014(2008).
[CrossRef]

Opt. Commun.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007).
[CrossRef]

Opt. Express

Phys. Rev. B

D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface wave interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411 (2008).
[CrossRef]

F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002).
[CrossRef]

Phys. Rev. Lett.

G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett. 96, 213901 (2006).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[CrossRef] [PubMed]

E. Feigenbaum and H. A. Atwater, “Resonant guided wave networks,” Phys. Rev. Lett. 104, 147402 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

L.-H. Shyu, C.-P. Chang, and Y.-C. Wang, “Influence of intensity loss in the cavity of a folded Fabry–Perot interferometer on interferometric signals,” Rev. Sci. Instrum. 82, 063103 (2011).
[CrossRef] [PubMed]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Comsol Multiphysics, http://www.comsol.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Left panel shows a schematic of the optical transmission experiment. 488.0 nm (for Ag) and 632.8 nm (for Au) Ar ion and HeNe laser light sources, respectively, are normally focused onto the sample surface by a 20 × microscope objective lens. A CCD camera records the transmission intensity through the slits as the sample surface was stepped. Right panel shows a scanning electron micrograph (taken with 40000 × magnification) of a typical structure. The considered slit has approximately 150 nm of width and was focused-ion-beam milled through a 200 nm thick Ag layer. In the experiments, the thicknesses of the Ag and Au films were varied in the range of 100– 450 nm . The slit length was fixed at 20 μm , and the width is varied from 70 to 270 nm .

Fig. 2
Fig. 2

(a) Illustration of the adopted model. A single frequency incoming plane wave with wave vector k 0 in air is linearly polarized perpendicular to a slit of subwavelength width w, milled in a metallic film with thickness t deposited on a BK7 glass substrate. Here, k SPP is the wave vector of the SPP mode. (b) and (c) 2D numerical simulations of a 150 nm slit fabricated in a 120 nm thick Ag film when illuminated by the line at 488.0 nm of an Ar ion laser, showing the amplitudes of the magnetic H field (along the z direction) and the electric E field (in the y direction), respectively. Length spans: (b)  x = 6 μm and y = 3 μm , (c)  x = 0.3 μm and y = 0.45 μm .

Fig. 3
Fig. 3

Theoretically estimated (lines) and experimental (symbols) normalized slit transmission intensities versus film thickness for the slits of the (a) 120, 160, 200, 270, and 330 nm thick Ag films, and the (b) 120, 180, 260, 360, and 450 nm thick Au samples. The dotted straight lines point out the thickness of the considered samples. In the minimum points, very low transmission values of the order of 10 2 were obtained. The insets show the measured transmission versus slit width for some film thicknesses. Here, the dashed straight lines are linear fittings of the experimental points.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E E i π w t cos ( k SPP t + π 2 ) ,
2 k 0 Re [ λ 0 λ SPP ] t + arg ( φ 1 φ 2 ) = 2 m y π ,
F = π 2 sin 1 ( 1 / f ) ,
1 λ SPP 2 = ( m z + φ z 2 L z ) 2 + ( m x + φ x 2 L x ) 2 .

Metrics