Abstract

We present a laser direct writing system for the efficient fabrication of high-resolution axicon structures. The setup makes use of scanning beam interference lithography incorporated with a fringe locking scheme for tight fringe phase control and allows us to fabricate large area structures with a period down to 450nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Reichelt, C. Pruss, and H. J. Tiziani, “Absolute interferometric test of aspheres by use of twin computer-generated holograms,” Appl. Opt. 42, 4468–4479 (2003).
    [CrossRef]
  2. C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
    [CrossRef]
  3. S. Reichelt, C. Pruss, and H. J. Tiziani, “New design techniques and calibration methods for CGH-null testing of aspheric surfaces,” Proc. SPIE 4778, 158–168 (2002).
    [CrossRef]
  4. J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
    [CrossRef]
  5. D. Sweeney, W. Stevenson, and D. Campbell, “CO2 laser beam shaping with computer generated holograms,” Appl. Opt. 15, 2959–2961 (1976).
    [CrossRef]
  6. E. G. Churin, “Diffraction-limited laser beam shaping by use of computer-generated holograms with dislocations,” Opt. Lett. 24, 620–621 (1999).
    [CrossRef]
  7. T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics 2002, OSA Technical Digest (Optical Society of America, 2002), pp. 5–7.
  8. R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.
  9. R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193 nminspection systems,” Proc. SPIE 5177, 9–15 (2003).
    [CrossRef]
  10. M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
    [CrossRef]
  11. M. A. Ahmed, M. M. Vogel, A. Voss, and T. Graf, “A 1 kW radially polarized thin-disk laser,” in CLEO/Europe—EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CA1_1.
  12. M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19, 5093–5103 (2011).
    [CrossRef]
  13. D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
    [CrossRef]
  14. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988).
    [CrossRef]
  15. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989).
    [CrossRef]
  16. J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
    [CrossRef]
  17. M. R. Wang and H. Su, “Laser direct-write gray-level mask and one-step etching for diffractive microlens fabrication,” Appl. Opt. 37, 7568–7576 (1998).
    [CrossRef]
  18. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38, 1295–1301 (1999).
    [CrossRef]
  19. J. H. Burge, “Full-aperture interferometric test of convex secondary mirrors using holographic test plates,” Proc. SPIE 2199, 181–192 (1994).
    [CrossRef]
  20. J. P. Bowen, R. L. Michaels, and C. G. Blough, “Generation of large-diameter diffractive elements with laser pattern generation,” Appl. Opt. 36, 8970–8975 (1997).
    [CrossRef]
  21. M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
    [CrossRef]
  22. R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology 15, S504–S511 (2004).
    [CrossRef]
  23. P. T. Konkola, “Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions,” Ph.D. dissertation (Department of Mechanical Engineering, Massachusetts Institute of Technology, 2003).
  24. J. Y. Decker, “Generation of subquarter-micron resist structures using optical interference lithography and image reversal,” J. Vac. Sci. Technol. B 15, 1949–1953 (1997).
    [CrossRef]
  25. E. H. Anderson, L. Peekskill, H. I. Smith, and M. L. Schattenburg, “Holographic lithography,” U.S. patent 5,142,385 (25 August 1991).
  26. R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
    [CrossRef]
  27. P. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
    [CrossRef]

2011 (3)

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19, 5093–5103 (2011).
[CrossRef]

2007 (1)

2004 (2)

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[CrossRef]

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology 15, S504–S511 (2004).
[CrossRef]

2003 (2)

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193 nminspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

S. Reichelt, C. Pruss, and H. J. Tiziani, “Absolute interferometric test of aspheres by use of twin computer-generated holograms,” Appl. Opt. 42, 4468–4479 (2003).
[CrossRef]

2002 (2)

S. Reichelt, C. Pruss, and H. J. Tiziani, “New design techniques and calibration methods for CGH-null testing of aspheric surfaces,” Proc. SPIE 4778, 158–168 (2002).
[CrossRef]

M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

2001 (1)

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
[CrossRef]

1999 (2)

1998 (1)

1997 (2)

J. P. Bowen, R. L. Michaels, and C. G. Blough, “Generation of large-diameter diffractive elements with laser pattern generation,” Appl. Opt. 36, 8970–8975 (1997).
[CrossRef]

J. Y. Decker, “Generation of subquarter-micron resist structures using optical interference lithography and image reversal,” J. Vac. Sci. Technol. B 15, 1949–1953 (1997).
[CrossRef]

1996 (1)

1995 (1)

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[CrossRef]

1994 (1)

J. H. Burge, “Full-aperture interferometric test of convex secondary mirrors using holographic test plates,” Proc. SPIE 2199, 181–192 (1994).
[CrossRef]

1989 (1)

1988 (1)

1976 (1)

Ahmed, M. A.

Anderson, E. H.

E. H. Anderson, L. Peekskill, H. I. Smith, and M. L. Schattenburg, “Holographic lithography,” U.S. patent 5,142,385 (25 August 1991).

Binder, J.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Blough, C. G.

Bowen, J. P.

Brunner, R.

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193 nminspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

Burge, J. H.

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[CrossRef]

J. H. Burge, “Full-aperture interferometric test of convex secondary mirrors using holographic test plates,” Proc. SPIE 2199, 181–192 (1994).
[CrossRef]

Campbell, D.

Chen, C. G.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology 15, S504–S511 (2004).
[CrossRef]

M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
[CrossRef]

Cherkashin, V. V.

Churin, E. G.

Ciddor, P.

Decker, J. Y.

J. Y. Decker, “Generation of subquarter-micron resist structures using optical interference lithography and image reversal,” J. Vac. Sci. Technol. B 15, 1949–1953 (1997).
[CrossRef]

Dobschal, H.-J.

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193 nminspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

Friberg, A. T.

Fritz, K.-P.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Gao, Z.

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

Graf, T.

Haefner, M.

Häfner, M.

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

Heilmann, R. K.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology 15, S504–S511 (2004).
[CrossRef]

M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
[CrossRef]

Heitkamp, B.

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

Hopp, D.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Kharissov, A. A.

Kiryanov, A. V.

Kiryanov, V. P.

Kokarev, S. A.

Konkola, P. T.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology 15, S504–S511 (2004).
[CrossRef]

M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
[CrossRef]

P. T. Konkola, “Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions,” Ph.D. dissertation (Department of Mechanical Engineering, Massachusetts Institute of Technology, 2003).

Korolkov, V. P.

Koronkevich, V. P.

Kück, H.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Ma, J.

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

Mayer, V.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Michaels, R. L.

Nakai, T.

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics 2002, OSA Technical Digest (Optical Society of America, 2002), pp. 5–7.

Ogawa, H.

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics 2002, OSA Technical Digest (Optical Society of America, 2002), pp. 5–7.

Osten, W.

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19, 5093–5103 (2011).
[CrossRef]

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.

Pati, G. S.

M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
[CrossRef]

Peekskill, L.

E. H. Anderson, L. Peekskill, H. I. Smith, and M. L. Schattenburg, “Holographic lithography,” U.S. patent 5,142,385 (25 August 1991).

Poleshchuk, A. G.

Pruss, C.

M. A. Ahmed, M. Haefner, M. Vogel, C. Pruss, A. Voss, W. Osten, and T. Graf, “High-power radially polarized Yb:YAG thin-disk laser with high efficiency,” Opt. Express 19, 5093–5103 (2011).
[CrossRef]

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[CrossRef]

S. Reichelt, C. Pruss, and H. J. Tiziani, “Absolute interferometric test of aspheres by use of twin computer-generated holograms,” Appl. Opt. 42, 4468–4479 (2003).
[CrossRef]

S. Reichelt, C. Pruss, and H. J. Tiziani, “New design techniques and calibration methods for CGH-null testing of aspheric surfaces,” Proc. SPIE 4778, 158–168 (2002).
[CrossRef]

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.

Reichelt, S.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[CrossRef]

S. Reichelt, C. Pruss, and H. J. Tiziani, “Absolute interferometric test of aspheres by use of twin computer-generated holograms,” Appl. Opt. 42, 4468–4479 (2003).
[CrossRef]

S. Reichelt, C. Pruss, and H. J. Tiziani, “New design techniques and calibration methods for CGH-null testing of aspheric surfaces,” Proc. SPIE 4778, 158–168 (2002).
[CrossRef]

Reichle, R.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.

Rudolf, K.

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193 nminspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

Schattenburg, M. L.

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology 15, S504–S511 (2004).
[CrossRef]

M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
[CrossRef]

E. H. Anderson, L. Peekskill, H. I. Smith, and M. L. Schattenburg, “Holographic lithography,” U.S. patent 5,142,385 (25 August 1991).

Schinköthe, W.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Schulz, C.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.

Seybold, J.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Smith, H. I.

E. H. Anderson, L. Peekskill, H. I. Smith, and M. L. Schattenburg, “Holographic lithography,” U.S. patent 5,142,385 (25 August 1991).

Steiner, R.

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193 nminspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

Sterns, F.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Stevenson, W.

Su, H.

Sweeney, D.

Tiziani, H.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.

Tiziani, H. J.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[CrossRef]

S. Reichelt, C. Pruss, and H. J. Tiziani, “Absolute interferometric test of aspheres by use of twin computer-generated holograms,” Appl. Opt. 42, 4468–4479 (2003).
[CrossRef]

S. Reichelt, C. Pruss, and H. J. Tiziani, “New design techniques and calibration methods for CGH-null testing of aspheric surfaces,” Proc. SPIE 4778, 158–168 (2002).
[CrossRef]

Turunen, J.

Vasara, A.

Verhoglyad, A. G.

Vogel, M.

Vogel, M. M.

M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, “Multilayer polarizing grating mirror used for the generation of radial polarization in Yb:YAG thin-disk lasers,” Opt. Lett. 32, 3272–3274 (2007).
[CrossRef]

M. A. Ahmed, M. M. Vogel, A. Voss, and T. Graf, “A 1 kW radially polarized thin-disk laser,” in CLEO/Europe—EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CA1_1.

Voss, A.

Wang, M. R.

Wibbing, D.

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

Yuan, C.

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

Zhu, R.

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

Zimmermann, F.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.

Appl. Opt. (7)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (2)

J. Y. Decker, “Generation of subquarter-micron resist structures using optical interference lithography and image reversal,” J. Vac. Sci. Technol. B 15, 1949–1953 (1997).
[CrossRef]

R. K. Heilmann, P. T. Konkola, C. G. Chen, G. S. Pati, and M. L. Schattenburg, “Digital heterodyne interference fringe control system,” J. Vac. Sci. Technol. B 19, 2342–2346 (2001).
[CrossRef]

Nanotechnology (1)

R. K. Heilmann, C. G. Chen, P. T. Konkola, and M. L. Schattenburg, “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders,” Nanotechnology 15, S504–S511 (2004).
[CrossRef]

Opt. Eng. (2)

J. Ma, C. Pruss, M. Häfner, B. Heitkamp, R. Zhu, Z. Gao, C. Yuan, and W. Osten, “A systematic analysis of the measurement of cone angles using high line density computer-generated holograms,” Opt. Eng. 50, 055801 (2011).
[CrossRef]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43, 2534–2540 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (6)

S. Reichelt, C. Pruss, and H. J. Tiziani, “New design techniques and calibration methods for CGH-null testing of aspheric surfaces,” Proc. SPIE 4778, 158–168 (2002).
[CrossRef]

J. H. Burge, “Applications of computer-generated holograms for interferometric measurement of large aspheric optics,” Proc. SPIE 2576, 258–269 (1995).
[CrossRef]

D. Hopp, D. Wibbing, C. Pruss, W. Osten, J. Binder, W. Schinköthe, F. Sterns, J. Seybold, K.-P. Fritz, V. Mayer, and H. Kück, “A novel diffractive encoding principle for absolute optical encoders,” Proc. SPIE 8082, 80823T (2011).
[CrossRef]

J. H. Burge, “Full-aperture interferometric test of convex secondary mirrors using holographic test plates,” Proc. SPIE 2199, 181–192 (1994).
[CrossRef]

M. L. Schattenburg, C. G. Chen, R. K. Heilmann, P. T. Konkola, and G. S. Pati, “Progress toward a general grating patterning technology using phase-locked scanning beams,” Proc. SPIE 4485, 378–384 (2002).
[CrossRef]

R. Brunner, R. Steiner, K. Rudolf, and H.-J. Dobschal, “Diffractive-refractive hybrid microscope objective for 193 nminspection systems,” Proc. SPIE 5177, 9–15 (2003).
[CrossRef]

Other (5)

E. H. Anderson, L. Peekskill, H. I. Smith, and M. L. Schattenburg, “Holographic lithography,” U.S. patent 5,142,385 (25 August 1991).

P. T. Konkola, “Design and analysis of a scanning beam interference lithography system for patterning gratings with nanometer-level distortions,” Ph.D. dissertation (Department of Mechanical Engineering, Massachusetts Institute of Technology, 2003).

M. A. Ahmed, M. M. Vogel, A. Voss, and T. Graf, “A 1 kW radially polarized thin-disk laser,” in CLEO/Europe—EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CA1_1.

T. Nakai and H. Ogawa, “Research on multi-layer diffractive optical elements and their application to camera lenses,” in Diffractive Optics and Micro-Optics 2002, OSA Technical Digest (Optical Society of America, 2002), pp. 5–7.

R. Reichle, C. Pruss, W. Osten, H. Tiziani, F. Zimmermann, and C. Schulz, “UV-Endoskop mit diffraktiver Aberrationskorrektur für die Motorenentwicklung,” in DGaO—Proceedings (Deutschen Gesellschaft für angewandte Optik, 2006), paper P44 (109.Tagung), www.dgao-proceedings.de.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Illustration of the stitching process. The final structure is composed by a huge number of overlapping ring patches.

Fig. 2
Fig. 2

Writing pattern in polar coordinates.

Fig. 3
Fig. 3

Exposure dose distribution (solid curve) and contrast (crosses) near the center of rotation [track radius: (a), (b)  10 μm and (c), (d)  25 μm ]. The radial 1 / e 2 size of the spot is 10 μm . Because of averaging effects a circular pattern envelope [tangential 1 / e 2 size of (a), (c)  10 μm ] leads to strong background illumination and exposure contrast degradation. This effect can be greatly reduced by shrinking the tangential pattern size to (b), (d)  4 μm .

Fig. 4
Fig. 4

Schematic of the SBIL setup.

Fig. 5
Fig. 5

(a) Simulated exposure fringe pattern. Simulation was performed with nonsequential ray tracing in ZEMAX. (b) Picture of the real interference pattern, taken with the observation camera of the lithography system, digitally overlaid with a picture of a linear reference grating (period: 10 μm ).

Fig. 6
Fig. 6

Fringe locking control scheme. The stage position is wrapped to fractions of the fringe period. Thus stage position and fringe phase sum up to the absolute fringe position.

Fig. 7
Fig. 7

Spectrum of the fringe position error (in arbitrary units). While the pure fringe phase error (only relative optical path changes of the interfering beams are regarded) with a fixed air bearing stage (dotted curve) and a free running stage (dashed curve) is acceptably small, the linear stage acts as strong error source in the frequency band up to 200 Hz .

Fig. 8
Fig. 8

Performance of the fringe locking system. (a) The total fringe error of 3 σ = 26.6 nm (dashed curve) can be reduced to approximately 3 σ = 5 nm (solid curve) by means of the fringe locking system. (b) The spectrum (in arbitrary units) shows the system to be effective up to 200 Hz .

Fig. 9
Fig. 9

Circular grating structure (photoresist on chromium, period P = 933 nm ) fabricated with the interference lithography setup.

Fig. 10
Fig. 10

AFM scan of the center of a circular grating structure after chromium wet etch.

Fig. 11
Fig. 11

AFM scan of a photoresist grating structure (period, 445 nm ; depth, 700 nm ) fabricated with the SBIL setup and a wavelength of 457.9 nm .

Tables (1)

Tables Icon

Table 1 Fringe Error Measurement Results

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

W ( r ) = 0 2 π { exp [ 2 ( r cos φ r s w ) 2 ] cos [ 2 π r cos φ r s p ] exp [ 2 ( r sin φ σ ) 2 ] } d φ ,
C = ( W max W min W max + W min ) .
I ( r ) cos ( 4 π λ r sin α + Δ ϕ ) ,

Metrics