Abstract

We obtained upconversion (UC) light-emitting photonic materials (YbPO4:Er) with an inverse opal structure by the self-assembly technique in combination with a solgel method. The effect of the photonic stopband on the UC luminescence of the H11/22, S3/24I15/24, and F9/2,4I15/24 transitions of Er3+ has been observed in the inverse opals of the Er3+-doped YbPO4. Significant suppression of the UC emission was detected if the photonic bandgap overlapped with the Er3+ ions emission band, while enhancement of the UC emission occurs if the emission band appears at the edge of the bandgap.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater 14, 271–274(2002).
    [CrossRef]
  4. R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
    [CrossRef] [PubMed]
  5. O. Painter, R. K. Lee, and A. Scherer, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821(1999).
    [CrossRef] [PubMed]
  6. P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
    [CrossRef] [PubMed]
  7. Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
    [CrossRef]
  8. J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
    [CrossRef]
  9. R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A. 47, 3380–3384 (1993).
    [CrossRef] [PubMed]
  10. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A. 50, 1764–1769(1994).
    [CrossRef] [PubMed]
  11. X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
    [CrossRef]
  12. P. Markowicz, C. Friend, Y. Z. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd, “Enhancement of two-photon emission in photonic crystals,” Opt. Lett. 27, 351–353 (2002).
    [CrossRef]
  13. Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
    [CrossRef]
  14. F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
    [CrossRef]
  15. V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater. 15, 75–78 (2003).
    [CrossRef]
  16. A. G. Galstyan, E. M. Raikh, and V. Z. Vardeny, “Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary,” Phys. Rev. B 62, 1780–1786(2000).
    [CrossRef]
  17. L. Bechger, P. Lodahl, and L. W. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B. 109, 9980–9988 (2005).
    [CrossRef]

2010 (1)

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
[CrossRef]

2009 (3)

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

2006 (1)

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
[CrossRef] [PubMed]

2005 (1)

L. Bechger, P. Lodahl, and L. W. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B. 109, 9980–9988 (2005).
[CrossRef]

2003 (2)

V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater. 15, 75–78 (2003).
[CrossRef]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

2002 (2)

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater 14, 271–274(2002).
[CrossRef]

P. Markowicz, C. Friend, Y. Z. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd, “Enhancement of two-photon emission in photonic crystals,” Opt. Lett. 27, 351–353 (2002).
[CrossRef]

2000 (2)

A. G. Galstyan, E. M. Raikh, and V. Z. Vardeny, “Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary,” Phys. Rev. B 62, 1780–1786(2000).
[CrossRef]

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, and A. Scherer, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821(1999).
[CrossRef] [PubMed]

1994 (1)

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A. 50, 1764–1769(1994).
[CrossRef] [PubMed]

1993 (1)

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A. 47, 3380–3384 (1993).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Bai, X.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Barry, R. A.

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
[CrossRef] [PubMed]

Bechger, L.

L. Bechger, P. Lodahl, and L. W. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B. 109, 9980–9988 (2005).
[CrossRef]

Boyd, R. W.

Braun, P. V.

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater 14, 271–274(2002).
[CrossRef]

Buddhudu, S.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

Chen, C.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Dai, Q. L.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Deng, Y. G.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
[CrossRef]

Dong, B.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Friend, C.

Galstyan, A. G.

A. G. Galstyan, E. M. Raikh, and V. Z. Vardeny, “Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary,” Phys. Rev. B 62, 1780–1786(2000).
[CrossRef]

Huang, X. G.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

John, S.

P. Markowicz, C. Friend, Y. Z. Shen, J. Swiatkiewicz, P. N. Prasad, O. Toader, S. John, and R. W. Boyd, “Enhancement of two-photon emission in photonic crystals,” Opt. Lett. 27, 351–353 (2002).
[CrossRef]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A. 50, 1764–1769(1994).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Kam, C. H.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

Kitaev, V.

V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater. 15, 75–78 (2003).
[CrossRef]

Lam, Y. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, and A. Scherer, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821(1999).
[CrossRef] [PubMed]

Lee, W. M.

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater 14, 271–274(2002).
[CrossRef]

Li, B.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

Li, L. L.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Li, Z. X.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Lodahl, P.

L. Bechger, P. Lodahl, and L. W. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B. 109, 9980–9988 (2005).
[CrossRef]

Lu, S. Z.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Markowicz, P.

Nabiev, R. F.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A. 47, 3380–3384 (1993).
[CrossRef] [PubMed]

Ng, S. L.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

Ozin, G. A.

V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater. 15, 75–78 (2003).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, and A. Scherer, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821(1999).
[CrossRef] [PubMed]

Pan, G. H.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Prasad, P. N.

Pruzinsky, S. A.

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater 14, 271–274(2002).
[CrossRef]

Qin, R. F.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Qu, X.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Quang, T.

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A. 50, 1764–1769(1994).
[CrossRef] [PubMed]

Raikh, E. M.

A. G. Galstyan, E. M. Raikh, and V. Z. Vardeny, “Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary,” Phys. Rev. B 62, 1780–1786(2000).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

Sanchez-Mondragon, J. J.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A. 47, 3380–3384 (1993).
[CrossRef] [PubMed]

Scherer, A.

O. Painter, R. K. Lee, and A. Scherer, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821(1999).
[CrossRef] [PubMed]

Shen, Y. Z.

Shi, Y. F.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
[CrossRef]

Song, H. W.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Sun, L.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

Sun, L. D.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Swiatkiewicz, J.

Toader, O.

Vardeny, V. Z.

A. G. Galstyan, E. M. Raikh, and V. Z. Vardeny, “Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary,” Phys. Rev. B 62, 1780–1786(2000).
[CrossRef]

Vos, L. W.

L. Bechger, P. Lodahl, and L. W. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B. 109, 9980–9988 (2005).
[CrossRef]

Wiltzius, P.

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yan, C. H.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Yang, Z. W.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

Yeh, P.

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A. 47, 3380–3384 (1993).
[CrossRef] [PubMed]

Yu, C. L.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

Yuan, Q.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Zhang, F.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
[CrossRef]

Zhang, H.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Zhang, R. Y.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
[CrossRef]

Zhao, D. Y.

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
[CrossRef]

Zhao, H. F.

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Zhou, H. P.

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

Zhou, J.

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

Zhou, Y.

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

Adv. Mater (1)

W. M. Lee, S. A. Pruzinsky, and P. V. Braun, “Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals,” Adv. Mater 14, 271–274(2002).
[CrossRef]

Adv. Mater. (1)

V. Kitaev and G. A. Ozin, “Self-assembled surface patterns of binary colloidal crystals,” Adv. Mater. 15, 75–78 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

J. Zhou, Y. Zhou, S. Buddhudu, S. L. Ng, Y. L. Lam, and C. H. Kam, “Photoluminescence of ZnS:Mn embedded in three-dimensional opal photonic crystals of submicron polymer spheres,” Appl. Phys. Lett. 76, 3513–3515(2000).
[CrossRef]

Chem. Commun. (1)

Z. X. Li, L. L. Li, H. P. Zhou, Q. Yuan, C. Chen, L. D. Sun, and C. H. Yan, “Colour modification action of an upconversion photonic crystal,” Chem. Commun. 6616–6618 (2009).
[CrossRef]

J. Am. Ceram. Soc. (1)

Z. W. Yang, X. G. Huang, L. Sun, J. Zhou, B. Li, and C. L. Yu, “Photonic bandgap and photoluminescence in TbPO4 inverse opal with coexistence of the (001) and (111) orientations,” J. Am. Ceram. Soc. 92, 1596–1598 (2009).
[CrossRef]

J. Mater. Chem. (1)

F. Zhang, Y. G. Deng, Y. F. Shi, R. Y. Zhang, and D. Y. Zhao, “Photoluminescence modification in upconversion rare-earth fluoride nanocrystal array constructed photonic crystals,” J. Mater. Chem. 20, 3985–3900 (2010).
[CrossRef]

J. Phys. Chem. B. (1)

L. Bechger, P. Lodahl, and L. W. Vos, “Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals,” J. Phys. Chem. B. 109, 9980–9988 (2005).
[CrossRef]

J. Phys. Chem. C (1)

X. Qu, H. W. Song, G. H. Pan, X. Bai, B. Dong, H. F. Zhao, Q. L. Dai, H. Zhang, R. F. Qin, and S. Z. Lu, “Three-dimensionally ordered macroporous ZrO2:Eu3+: photonic band effect and local environments,” J. Phys. Chem. C 113, 5906–5911 (2009).
[CrossRef]

Langmuir (1)

R. A. Barry and P. Wiltzius, “Humidity-sensing inverse opal hydrogels,” Langmuir 22, 1369–1374 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. A. (2)

R. F. Nabiev, P. Yeh, and J. J. Sanchez-Mondragon, “Dynamics of the spontaneous emission of an atom into the photon-density-of-states gap: solvable quantum-electrodynamical model,” Phys. Rev. A. 47, 3380–3384 (1993).
[CrossRef] [PubMed]

S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A. 50, 1764–1769(1994).
[CrossRef] [PubMed]

Phys. Rev. B (1)

A. G. Galstyan, E. M. Raikh, and V. Z. Vardeny, “Emission spectrum of a dipole in a semi-infinite periodic dielectric structure: effect of the boundary,” Phys. Rev. B 62, 1780–1786(2000).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Science (2)

O. Painter, R. K. Lee, and A. Scherer, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821(1999).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299, 358–362(2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a), (b) SEM images of the unitary opal templates constructed with PS microspheres 400 nm in diameter and binary templates constructed with PS microspheres 220 and 400 nm in diameter, respectively. (c), (d) SEM micrographs of PC-II and the reference sample, respectively.

Fig. 2
Fig. 2

X-ray powder diffraction patterns of PC-II.

Fig. 3
Fig. 3

Transmittance spectra of PC-I, PC-II, PC-III, and the reference sample.

Fig. 4
Fig. 4

UC emission spectra of (a) PC-I inverse opals and reference sample, (b) PC-II inverse opals and reference sample, and (c) PC-III inverse opals and reference sample.

Tables (2)

Tables Icon

Table 1 Intensity Ratios of I 523 / I 670 and I 548 / I 670 for PC-I, PC-II, and the Reference Sample

Tables Icon

Table 2 Intensity Ratios of I 656 / I 548 and I 670 / I 548 in PC-III and the Reference Sample

Metrics