Abstract

We examined the near-field collection efficiency of near-infrared radiation for an aperture probe. We used InAs quantum dots as ideal point light sources with emission wavelengths ranging from 1.1 to 1.6μm. We experimentally investigated the wavelength dependence of the collection efficiency and compared the results with computational simulations that modeled the actual probe structure. The observed degradation in the collection efficiency is attributed to the cutoff characteristics of the gold-clad tapered waveguide, which approaches an ideal conductor at near-infrared wavelengths.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
    [CrossRef]
  2. A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
    [CrossRef]
  3. Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
    [CrossRef]
  4. T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
    [CrossRef]
  5. T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
    [CrossRef]
  6. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
    [CrossRef]
  7. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
    [CrossRef]
  8. T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
    [CrossRef]
  9. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
    [CrossRef] [PubMed]
  10. Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008).
    [CrossRef]
  11. Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010).
    [CrossRef]
  12. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  13. K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
    [CrossRef]
  14. Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
    [CrossRef]
  15. S. Mononobe and M. Ohtsu, “Development of a fiber used for fabricating application oriented near-field optical probes,” IEEE Photon. Technol. Lett. 10, 99–101 (1998).
    [CrossRef]
  16. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
    [CrossRef]
  17. K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
    [CrossRef]
  18. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

2010

Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010).
[CrossRef]

2008

Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008).
[CrossRef]

2007

T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

2005

Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

2003

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

2002

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
[CrossRef]

1999

G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
[CrossRef]

1998

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

S. Mononobe and M. Ohtsu, “Development of a fiber used for fabricating application oriented near-field optical probes,” IEEE Photon. Technol. Lett. 10, 99–101 (1998).
[CrossRef]

1995

A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
[CrossRef]

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

1984

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

1944

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Aoyagi, Y.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
[CrossRef]

Arakawa, Y.

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

Csutak, S.

G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
[CrossRef]

Denk, W.

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

Deppe, D. G.

G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
[CrossRef]

Ghosh, G.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Grober, R. D.

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Hirose, S.

Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Huffaker, D. L.

G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
[CrossRef]

Karrai, K.

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

Kuroda, T.

T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
[CrossRef]

L’haridon, H.

A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
[CrossRef]

Lambert, B.

A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
[CrossRef]

Lanz, M.

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

Le Corre, A.

A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
[CrossRef]

Matsuda, K.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
[CrossRef]

Mihara, M.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
[CrossRef]

Miyazawa, T.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Mononobe, S.

S. Mononobe and M. Ohtsu, “Development of a fiber used for fabricating application oriented near-field optical probes,” IEEE Photon. Technol. Lett. 10, 99–101 (1998).
[CrossRef]

Nair, S.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Nishi, K.

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Nomura, S.

Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010).
[CrossRef]

Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008).
[CrossRef]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
[CrossRef]

Ohtsu, M.

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

S. Mononobe and M. Ohtsu, “Development of a fiber used for fabricating application oriented near-field optical probes,” IEEE Photon. Technol. Lett. 10, 99–101 (1998).
[CrossRef]

Palik, E. D.

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Park, G.

G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
[CrossRef]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

Pohl, D.

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

Ponchet, A.

A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
[CrossRef]

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

Saiki, T.

Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010).
[CrossRef]

Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008).
[CrossRef]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
[CrossRef]

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Sakoda, K.

T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
[CrossRef]

Sakuma, Y.

T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
[CrossRef]

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Salan, S.

A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
[CrossRef]

Shchekin, O. B.

G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
[CrossRef]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

Sugimoto, Y.

Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010).
[CrossRef]

Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008).
[CrossRef]

Takagahara, T.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Takatsu, M.

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

Takeguchi, M.

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

Takemoto, K.

T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
[CrossRef]

Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Tsumori, N.

Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010).
[CrossRef]

Usuki, T.

T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
[CrossRef]

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

Yokoyama, N.

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
[CrossRef]

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

Appl. Phys. Lett.

G. Park, O. B. Shchekin, S. Csutak, D. L. Huffaker, and D. G. Deppe, “Room-temperature continuous-wave operation of a single-layered 1.3 μm quantum dot laser,” Appl. Phys. Lett. 75, 3267–3269 (1999).
[CrossRef]

A. Ponchet, A. Le Corre, H. L’haridon, B. Lambert, and S. Salan, “Relationship between self organization and size of InAs islands on InP (001) grown by gas source molecular beam epitaxy,” Appl. Phys. Lett. 67, 1850–1852 (1995).
[CrossRef]

T. Kuroda, Y. Sakuma, K. Sakoda, K. Takemoto, and T. Usuki, “Single-photon interferography in InAs/InP quantum dots emitting at 1300 nm wavelength,” Appl. Phys. Lett. 91, 223113 (2007).
[CrossRef]

Y. Sugimoto, T. Saiki, and S. Nomura, “Visualization of weak confinement potentials by near-field optical imaging spectroscopy of exciton and biexciton in a single quantum dot,” Appl. Phys. Lett. 93, 083116 (2008).
[CrossRef]

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, and Y. Aoyagi, “Near-field photoluminescence imaging of single semiconductor quantum constituents with a spatial resolution of 30 nm,” Appl. Phys. Lett. 81, 2291–2293 (2002).
[CrossRef]

D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653(1984).
[CrossRef]

K. Karrai and R. D. Grober, “Piezoelectric tip sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842–1844 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Mononobe and M. Ohtsu, “Development of a fiber used for fabricating application oriented near-field optical probes,” IEEE Photon. Technol. Lett. 10, 99–101 (1998).
[CrossRef]

J. Vac. Sci. Technol. B

Y. Sakuma, M. Takeguchi, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Role of thin InP cap layer and anion exchange reaction on structural and optical properties of InAs quantum dots on InP (001),” J. Vac. Sci. Technol. B 23, 1741–1746 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

T. Miyazawa, K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, M. Takatsu, and Y. Arakawa, “Single-photon generation in the 1.55 μm optical-fiber band from an InAs/InP quantum dot,” Jpn. J. Appl. Phys. 44, L620–L622(2005).
[CrossRef]

T. Saiki, K. Nishi, and M. Ohtsu, “Low temperature near-field photoluminescence spectroscopy of InGaAs single quantum dots,” Jpn. J. Appl. Phys. 37, 1638–1642 (1998).
[CrossRef]

Nat. Photon.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photon. 1, 704–708(2007).
[CrossRef]

Opt. Rev.

Y. Sugimoto, N. Tsumori, T. Saiki, and S. Nomura, “Visualization of space charge field effect on excitons in a GaAs quantum dot by near-field optical wavefunction mapping,” Opt. Rev. 16269–273 (2010).
[CrossRef]

Phys. Rev.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. Lett.

K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, and T. Takagahara, “Near-field optical mapping of exciton wave functions in a GaAs quantum dot,” Phys. Rev. Lett. 91, 177401 (2003).
[CrossRef] [PubMed]

Physica E

K. Takemoto, Y. Sakuma, S. Hirose, T. Usuki, N. Yokoyama, T. Miyazawa, M. Takatsu, and Y. Arakawa, “Single InAs/InP quantum dot spectroscopy in 1.3–1.55 ⁢μm telecommunication band,” Physica E 26, 185–189 (2005).
[CrossRef]

Y. Sakuma, K. Takemoto, S. Hirose, T. Usuki, and N. Yokoyama, “Controlling emission wavelength from InAs self-assembled quantum dots on InP (001) during MOCVD,” Physica E 26, 81–85 (2005).
[CrossRef]

Other

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of experimental setup for near- and far-field PL measurements. (b) Typical near-field PL spectra from InAs/InP QDs obtained at three different positions.

Fig. 2
Fig. 2

Far-field macro PL spectrum (blue line) and integrated near-field PL spectrum (red line) of InAs/InP QDs. Both spectra are normalized by the maximum intensity.

Fig. 3
Fig. 3

Plots of the near-field to far-field PL intensity ratio for six emission peaks in Fig. 2 (blue squares) and the calculated integrated Poynting fluxes for aperture (red circles) and aperture NSOM probe (blue triangles) as functions of wavelength. All plots are normalized by the maximum value.

Fig. 4
Fig. 4

(a) FDTD calculation model for simple aperture configuration. A 100 nm diameter aperture is formed in a 100 nm thick gold film on an InP substrate. (b) Cross-sectional schematic of the aperture NSOM probe configuration (left) and an enlargement of the aperture (right). NSOM probe with a 100 nm diameter aperture is set close to an InP substrate. In both models, a 30 nm diameter radiation source buried 30 nm beneath the surface emits linearly polarized radiation in the x direction. The time-averaged Poynting vectors were integrated over the red area.

Metrics