Abstract

Underwater, natural illumination typically varies strongly temporally and spatially. The reason is that waves on the water surface refract light into the water in a spatiotemporally varying manner. The resulting underwater illumination field forms a caustic network and is known as flicker. This work shows that caustics can be useful for stereoscopic vision, naturally leading to range mapping of the scene. Range triangulation by stereoscopic vision requires the determination of correspondence between image points in different viewpoints, which is often a difficult problem. We show that the spatiotemporal caustic pattern very effectively establishes stereo correspondences. Thus, we term the use of this effect as CauStereo. The temporal radiance variations due to flicker are unique to each object point, thus disambiguating the correspondence, with very simple calculations. Theoretical limitations of the method are analyzed using ray-tracing simulations. The method is demonstrated by underwater in situ experiments.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Walker, Marine Light Field Statistics (John Wiley, 1994), Chap. 10.
  2. N. G. Jerlov, Marine Optics (Elsevier, 1976), Chap. 6.
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  4. A. Tonizzo, J. Zhou, A. Gilerson, M. S. Twardowski, D. J. Gray, R. A. Arnone, B. M. Gross, F. Moshary, and S. A. Ahmed, “Polarized light in coastal waters: hyperspectral and multiangular analysis,” Opt. Express 17, 5666–5683 (2009).
    [CrossRef] [PubMed]
  5. N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).
  6. D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed. (Cambridge University, 2001), Chaps. 3,4.
  7. H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241–248(2005).
    [CrossRef] [PubMed]
  8. T. W. Cronin and N. J. Marshall, “Parallel processing and image analysis in the eyes of mantis shrimps,” Biol. Bull. 200, 177–183 (2001).
    [CrossRef] [PubMed]
  9. S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011).
    [CrossRef] [PubMed]
  10. D. C. Parkyn, J. D. Austin, and C. W. Hawryshyn, “Acquisition of polarized-light orientation in salmonids under laboratory conditions,” Anim. Behav. 65, 893–904 (2003).
    [CrossRef]
  11. G. Horvath and D. Varju, “On the structure of the aerial visual field of aquatic animals distorted by refraction,” Bull. Math. Biol. 53, 425–441 (1991).
  12. L. M. Mathger, N. Shashar, and R. T. Hanlon, “Do cephalopods communicate using polarized light reflections from their skin?” J. Exp. Biol. 212, 2133–2140 (2009).
    [CrossRef] [PubMed]
  13. A. Sarafraz, S. Negahdaripour, and Y. Y. Schechner, “Enhancing images in scattering media utilizing stereovision and polarization,” in Proceedings of the IEEE Workshop Applications of Computer Vision (IEEE, 2009).
  14. D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008).
    [CrossRef]
  15. M. Bryant, D. Wettergreen, S. Abdallah, and A. Zelinsky, “Robust camera calibration for an autonomous underwater vehicle,” in Proceedings of Australian Conference on Robotics and Automation (2000), pp. 111–116.
  16. J. M. Lavest, F. Guichard, and C. Rousseau, “Multiview reconstruction combining underwater and air sensors,” in Proceedings of the IEEE International Conference on Image Proccessing (IEEE, 2000), pp. 813–816.
  17. Y. Kahanov and J. Royal, “Analysis of hull remains of the Dor D vessel, Tantura Lagoon, Israel,” Int. J. Naut. Arch. 30, 257–265 (2001).
  18. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Ocean. Eng. 30, 570–587 (2005).
    [CrossRef]
  19. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Machine Intell. 31, 385–399(2009).
    [CrossRef]
  20. Y. Y. Schechner and N. Karpel, “Attenuating natural flicker patterns,” in Proceedings of MTS/IEEE Oceans (IEEE, 2004), pp. 813–816.
  21. Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Stereo from flickering caustics,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2009), pp. 205–212.
    [CrossRef]
  22. Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Underwater stereo using natural flickering illumination,” in Proceedings of MTS/IEEE Oceans (IEEE, 2010).
    [CrossRef]
  23. D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
    [CrossRef]
  24. A. Fournier and W. T. Reeves, “A simple model of ocean waves,” in Proceedings of Special Interest Group on Computer Graphics and Interactive Technology, pp. 75–84 (1986).
  25. M. N. Gamito and F. K. Musgrave, “An accurate model of wave refraction over shallow water,” Comput. Graphics 26, 291–307 (2002).
    [CrossRef]
  26. B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994).
    [CrossRef]
  27. J. S. Jaffe, “Computer modelling and the design of optimal underwater imaging systems,” IEEE J. Ocean. Eng. 15, 101–111 (1990).
    [CrossRef]
  28. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  29. H. Zhang and K. J. Voss, “Bidirectional reflectance study on dry, wet, and submerged particulate layers: effects of pore liquid refractive index and translucent particle concentrations,” Appl. Opt. 45, 8753–8763 (2006).
    [CrossRef] [PubMed]
  30. A. Fraser, R. Walker, and F. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Ocean. Eng. 5, 195–198 (1980).
    [CrossRef]
  31. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003), Chaps. 9–12.
  32. E. Trucco and A. Verri, Introductory Techniques For 3D Computer Vision (Prentice Hall, 1998), Chap. 6.
  33. R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab,” in Proceedings of International Symposium on Underwater Technology (IEEE, 2002), pp. 141–145.
    [CrossRef]
  34. A. Troccoli, S. B. Kang, and S. M. Seitz, “Multi-view multi-exposure stereo,” in Proceedings of 3D Data Processing, Visualization, and Transmission (2006), pp. 861–868.
  35. Y. Swirski, Y. Y. Schechner, and T. Nir, “Variational stereo in dynamic illumination,” to appear in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2011).
  36. T. Treibitz, Y. Y. Schechner, and H. Singh, “Flat refractive geometry,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2008).
  37. J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.
  38. S. Durden and J. Vesecky, “A physical radar cross-section model for a wind-driven sea with swell,” IEEE J. Ocean. Eng. 10, 445–451 (1985).
    [CrossRef]
  39. C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
    [CrossRef]
  40. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurements of sea-surface slope statistics,” Appl. Opt. 36, 4202–4213 (1997).
    [CrossRef] [PubMed]
  41. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994), Chaps. 3–5.
  42. S. Darula and R. Kittler, “CIE general sky standard defining luminance distributions,” in Proceedings of the International Building Performance Simulation Association (IEEE, 2002).
  43. R. W. Preisendorfer, Hydrologic Optics (U. S. Department of Commerce, 1976), Chaps. 1 and 12.
  44. D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.
  45. K. Kamiuto, “Study of the Henyey-Greenstein approximation to scattering phase functions,” J. Quant. Spectrosc. Radiat. Transfer 37, 411–413 (1987).
    [CrossRef]
  46. J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
    [CrossRef]
  47. L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: shape recovery for dynamic scenes,” in Proceedings IEEE Computer Vision and Pattern Recognition (IEEE, 2003).
  48. T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).
  49. W. N. McFarland and E. R. Loew, “Wave produced changes in underwater light and their relations to vision,” Envir. Biol. Fish 8, 173–184 (1983).
    [CrossRef]
  50. A. Fung and K. Lee, “A semi-empirical sea-spectrum model for scattering coefficient estimation,” IEEE J. Ocean. Eng. 7, 166–176 (1982).
    [CrossRef]

2011

S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011).
[CrossRef] [PubMed]

2009

L. M. Mathger, N. Shashar, and R. T. Hanlon, “Do cephalopods communicate using polarized light reflections from their skin?” J. Exp. Biol. 212, 2133–2140 (2009).
[CrossRef] [PubMed]

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Machine Intell. 31, 385–399(2009).
[CrossRef]

A. Tonizzo, J. Zhou, A. Gilerson, M. S. Twardowski, D. J. Gray, R. A. Arnone, B. M. Gross, F. Moshary, and S. A. Ahmed, “Polarized light in coastal waters: hyperspectral and multiangular analysis,” Opt. Express 17, 5666–5683 (2009).
[CrossRef] [PubMed]

2008

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008).
[CrossRef]

2006

2005

H. R. Gordon, “Normalized water-leaving radiance: revisiting the influence of surface roughness,” Appl. Opt. 44, 241–248(2005).
[CrossRef] [PubMed]

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Ocean. Eng. 30, 570–587 (2005).
[CrossRef]

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

2003

D. C. Parkyn, J. D. Austin, and C. W. Hawryshyn, “Acquisition of polarized-light orientation in salmonids under laboratory conditions,” Anim. Behav. 65, 893–904 (2003).
[CrossRef]

2002

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[CrossRef]

M. N. Gamito and F. K. Musgrave, “An accurate model of wave refraction over shallow water,” Comput. Graphics 26, 291–307 (2002).
[CrossRef]

2001

Y. Kahanov and J. Royal, “Analysis of hull remains of the Dor D vessel, Tantura Lagoon, Israel,” Int. J. Naut. Arch. 30, 257–265 (2001).

T. W. Cronin and N. J. Marshall, “Parallel processing and image analysis in the eyes of mantis shrimps,” Biol. Bull. 200, 177–183 (2001).
[CrossRef] [PubMed]

1997

1994

B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994).
[CrossRef]

1991

G. Horvath and D. Varju, “On the structure of the aerial visual field of aquatic animals distorted by refraction,” Bull. Math. Biol. 53, 425–441 (1991).

1990

J. S. Jaffe, “Computer modelling and the design of optimal underwater imaging systems,” IEEE J. Ocean. Eng. 15, 101–111 (1990).
[CrossRef]

1988

T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).

1987

K. Kamiuto, “Study of the Henyey-Greenstein approximation to scattering phase functions,” J. Quant. Spectrosc. Radiat. Transfer 37, 411–413 (1987).
[CrossRef]

1985

S. Durden and J. Vesecky, “A physical radar cross-section model for a wind-driven sea with swell,” IEEE J. Ocean. Eng. 10, 445–451 (1985).
[CrossRef]

1983

W. N. McFarland and E. R. Loew, “Wave produced changes in underwater light and their relations to vision,” Envir. Biol. Fish 8, 173–184 (1983).
[CrossRef]

1982

A. Fung and K. Lee, “A semi-empirical sea-spectrum model for scattering coefficient estimation,” IEEE J. Ocean. Eng. 7, 166–176 (1982).
[CrossRef]

1980

A. Fraser, R. Walker, and F. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Ocean. Eng. 5, 195–198 (1980).
[CrossRef]

1974

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

1954

Abdallah, S.

M. Bryant, D. Wettergreen, S. Abdallah, and A. Zelinsky, “Robust camera calibration for an autonomous underwater vehicle,” in Proceedings of Australian Conference on Robotics and Automation (2000), pp. 111–116.

Ahmed, S. A.

Arnone, R. A.

Austin, J. D.

D. C. Parkyn, J. D. Austin, and C. W. Hawryshyn, “Acquisition of polarized-light orientation in salmonids under laboratory conditions,” Anim. Behav. 65, 893–904 (2003).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Bowker, D. E.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.

Bryant, M.

M. Bryant, D. Wettergreen, S. Abdallah, and A. Zelinsky, “Robust camera calibration for an autonomous underwater vehicle,” in Proceedings of Australian Conference on Robotics and Automation (2000), pp. 111–116.

Caimi, F. M.

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008).
[CrossRef]

Caldwell, R. L.

T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).

Camps, A.

J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.

Churnside, J. H.

Cox, C.

Cronin, T. W.

T. W. Cronin and N. J. Marshall, “Parallel processing and image analysis in the eyes of mantis shrimps,” Biol. Bull. 200, 177–183 (2001).
[CrossRef] [PubMed]

T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).

Curless, B.

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: shape recovery for dynamic scenes,” in Proceedings IEEE Computer Vision and Pattern Recognition (IEEE, 2003).

Dalgleish, F. R.

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008).
[CrossRef]

Darula, S.

S. Darula and R. Kittler, “CIE general sky standard defining luminance distributions,” in Proceedings of the International Building Performance Simulation Association (IEEE, 2002).

Davis, J.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Davis, R. E.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.

Doyle, R. D.

T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).

Durden, S.

S. Durden and J. Vesecky, “A physical radar cross-section model for a wind-driven sea with swell,” IEEE J. Ocean. Eng. 10, 445–451 (1985).
[CrossRef]

Eustice, R.

R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab,” in Proceedings of International Symposium on Underwater Technology (IEEE, 2002), pp. 141–145.
[CrossRef]

Fournier, A.

A. Fournier and W. T. Reeves, “A simple model of ocean waves,” in Proceedings of Special Interest Group on Computer Graphics and Interactive Technology, pp. 75–84 (1986).

Fraser, A.

A. Fraser, R. Walker, and F. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Ocean. Eng. 5, 195–198 (1980).
[CrossRef]

Fung, A.

A. Fung and K. Lee, “A semi-empirical sea-spectrum model for scattering coefficient estimation,” IEEE J. Ocean. Eng. 7, 166–176 (1982).
[CrossRef]

Gamito, M. N.

M. N. Gamito and F. K. Musgrave, “An accurate model of wave refraction over shallow water,” Comput. Graphics 26, 291–307 (2002).
[CrossRef]

Garcia, R.

N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).

Gilerson, A.

Gomez, J.

J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.

Gordon, H. R.

Gracias, N.

N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).

Gray, D. J.

Gross, B. M.

Guichard, F.

J. M. Lavest, F. Guichard, and C. Rousseau, “Multiview reconstruction combining underwater and air sensors,” in Proceedings of the IEEE International Conference on Image Proccessing (IEEE, 2000), pp. 813–816.

Hanlon, R. T.

L. M. Mathger, N. Shashar, and R. T. Hanlon, “Do cephalopods communicate using polarized light reflections from their skin?” J. Exp. Biol. 212, 2133–2140 (2009).
[CrossRef] [PubMed]

Hansen, J. E.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hartley, R.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003), Chaps. 9–12.

Hawryshyn, C. W.

D. C. Parkyn, J. D. Austin, and C. W. Hawryshyn, “Acquisition of polarized-light orientation in salmonids under laboratory conditions,” Anim. Behav. 65, 893–904 (2003).
[CrossRef]

Herzberg, B.

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Stereo from flickering caustics,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2009), pp. 205–212.
[CrossRef]

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Underwater stereo using natural flickering illumination,” in Proceedings of MTS/IEEE Oceans (IEEE, 2010).
[CrossRef]

Horvath, G.

G. Horvath and D. Varju, “On the structure of the aerial visual field of aquatic animals distorted by refraction,” Bull. Math. Biol. 53, 425–441 (1991).

Howland, J.

R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab,” in Proceedings of International Symposium on Underwater Technology (IEEE, 2002), pp. 141–145.
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

Jaffe, J. S.

J. S. Jaffe, “Computer modelling and the design of optimal underwater imaging systems,” IEEE J. Ocean. Eng. 15, 101–111 (1990).
[CrossRef]

Jahne, B.

B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994).
[CrossRef]

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, 1976), Chap. 6.

Johnsen, S.

S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011).
[CrossRef] [PubMed]

Jones, W. T.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.

Jurgens, F.

A. Fraser, R. Walker, and F. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Ocean. Eng. 5, 195–198 (1980).
[CrossRef]

Kahanov, Y.

Y. Kahanov and J. Royal, “Analysis of hull remains of the Dor D vessel, Tantura Lagoon, Israel,” Int. J. Naut. Arch. 30, 257–265 (2001).

Kamiuto, K.

K. Kamiuto, “Study of the Henyey-Greenstein approximation to scattering phase functions,” J. Quant. Spectrosc. Radiat. Transfer 37, 411–413 (1987).
[CrossRef]

Kang, S. B.

A. Troccoli, S. B. Kang, and S. M. Seitz, “Multi-view multi-exposure stereo,” in Proceedings of 3D Data Processing, Visualization, and Transmission (2006), pp. 861–868.

Karpel, N.

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Ocean. Eng. 30, 570–587 (2005).
[CrossRef]

Y. Y. Schechner and N. Karpel, “Attenuating natural flicker patterns,” in Proceedings of MTS/IEEE Oceans (IEEE, 2004), pp. 813–816.

Kittler, R.

S. Darula and R. Kittler, “CIE general sky standard defining luminance distributions,” in Proceedings of the International Building Performance Simulation Association (IEEE, 2002).

Klinke, J.

B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994).
[CrossRef]

Kocak, D. M.

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008).
[CrossRef]

Lavest, J. M.

J. M. Lavest, F. Guichard, and C. Rousseau, “Multiview reconstruction combining underwater and air sensors,” in Proceedings of the IEEE International Conference on Image Proccessing (IEEE, 2000), pp. 813–816.

Lee, K.

A. Fung and K. Lee, “A semi-empirical sea-spectrum model for scattering coefficient estimation,” IEEE J. Ocean. Eng. 7, 166–176 (1982).
[CrossRef]

Livingston, W.

D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed. (Cambridge University, 2001), Chaps. 3,4.

Loew, E. R.

W. N. McFarland and E. R. Loew, “Wave produced changes in underwater light and their relations to vision,” Envir. Biol. Fish 8, 173–184 (1983).
[CrossRef]

Lynch, D. K.

D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed. (Cambridge University, 2001), Chaps. 3,4.

Marshall, N. J.

S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011).
[CrossRef] [PubMed]

T. W. Cronin and N. J. Marshall, “Parallel processing and image analysis in the eyes of mantis shrimps,” Biol. Bull. 200, 177–183 (2001).
[CrossRef] [PubMed]

Mathger, L. M.

L. M. Mathger, N. Shashar, and R. T. Hanlon, “Do cephalopods communicate using polarized light reflections from their skin?” J. Exp. Biol. 212, 2133–2140 (2009).
[CrossRef] [PubMed]

McFarland, W. N.

W. N. McFarland and E. R. Loew, “Wave produced changes in underwater light and their relations to vision,” Envir. Biol. Fish 8, 173–184 (1983).
[CrossRef]

Miranda, J.

J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994), Chaps. 3–5.

Moshary, F.

Munk, W.

Musgrave, F. K.

M. N. Gamito and F. K. Musgrave, “An accurate model of wave refraction over shallow water,” Comput. Graphics 26, 291–307 (2002).
[CrossRef]

Myrick, D. L.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.

Nair, J. N.

T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).

Negahdaripour, S.

N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Underwater stereo using natural flickering illumination,” in Proceedings of MTS/IEEE Oceans (IEEE, 2010).
[CrossRef]

A. Sarafraz, S. Negahdaripour, and Y. Y. Schechner, “Enhancing images in scattering media utilizing stereovision and polarization,” in Proceedings of the IEEE Workshop Applications of Computer Vision (IEEE, 2009).

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Stereo from flickering caustics,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2009), pp. 205–212.
[CrossRef]

Nehab, D.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Neumann, L.

N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).

Nir, T.

Y. Swirski, Y. Y. Schechner, and T. Nir, “Variational stereo in dynamic illumination,” to appear in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2011).

Parkyn, D. C.

D. C. Parkyn, J. D. Austin, and C. W. Hawryshyn, “Acquisition of polarized-light orientation in salmonids under laboratory conditions,” Anim. Behav. 65, 893–904 (2003).
[CrossRef]

Pizarro, O.

R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab,” in Proceedings of International Symposium on Underwater Technology (IEEE, 2002), pp. 141–145.
[CrossRef]

Prados, R.

N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).

Preisendorfer, R. W.

R. W. Preisendorfer, Hydrologic Optics (U. S. Department of Commerce, 1976), Chaps. 1 and 12.

Ramamoorthi, R.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Reeves, W. T.

A. Fournier and W. T. Reeves, “A simple model of ocean waves,” in Proceedings of Special Interest Group on Computer Graphics and Interactive Technology, pp. 75–84 (1986).

Rousseau, C.

J. M. Lavest, F. Guichard, and C. Rousseau, “Multiview reconstruction combining underwater and air sensors,” in Proceedings of the IEEE International Conference on Image Proccessing (IEEE, 2000), pp. 813–816.

Royal, J.

Y. Kahanov and J. Royal, “Analysis of hull remains of the Dor D vessel, Tantura Lagoon, Israel,” Int. J. Naut. Arch. 30, 257–265 (2001).

Rusinkiewicz, S.

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Sarafraz, A.

A. Sarafraz, S. Negahdaripour, and Y. Y. Schechner, “Enhancing images in scattering media utilizing stereovision and polarization,” in Proceedings of the IEEE Workshop Applications of Computer Vision (IEEE, 2009).

Scharstein, D.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[CrossRef]

Schechner, Y. Y.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Machine Intell. 31, 385–399(2009).
[CrossRef]

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008).
[CrossRef]

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Ocean. Eng. 30, 570–587 (2005).
[CrossRef]

Y. Y. Schechner and N. Karpel, “Attenuating natural flicker patterns,” in Proceedings of MTS/IEEE Oceans (IEEE, 2004), pp. 813–816.

A. Sarafraz, S. Negahdaripour, and Y. Y. Schechner, “Enhancing images in scattering media utilizing stereovision and polarization,” in Proceedings of the IEEE Workshop Applications of Computer Vision (IEEE, 2009).

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Underwater stereo using natural flickering illumination,” in Proceedings of MTS/IEEE Oceans (IEEE, 2010).
[CrossRef]

Y. Swirski, Y. Y. Schechner, and T. Nir, “Variational stereo in dynamic illumination,” to appear in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2011).

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Stereo from flickering caustics,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2009), pp. 205–212.
[CrossRef]

T. Treibitz, Y. Y. Schechner, and H. Singh, “Flat refractive geometry,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2008).

Seitz, S. M.

A. Troccoli, S. B. Kang, and S. M. Seitz, “Multi-view multi-exposure stereo,” in Proceedings of 3D Data Processing, Visualization, and Transmission (2006), pp. 861–868.

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: shape recovery for dynamic scenes,” in Proceedings IEEE Computer Vision and Pattern Recognition (IEEE, 2003).

Shashar, N.

L. M. Mathger, N. Shashar, and R. T. Hanlon, “Do cephalopods communicate using polarized light reflections from their skin?” J. Exp. Biol. 212, 2133–2140 (2009).
[CrossRef] [PubMed]

Shaw, J. A.

Singh, H.

T. Treibitz, Y. Y. Schechner, and H. Singh, “Flat refractive geometry,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2008).

R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab,” in Proceedings of International Symposium on Underwater Technology (IEEE, 2002), pp. 141–145.
[CrossRef]

Stacy, K.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.

Swirski, Y.

Y. Swirski, Y. Y. Schechner, and T. Nir, “Variational stereo in dynamic illumination,” to appear in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2011).

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Stereo from flickering caustics,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2009), pp. 205–212.
[CrossRef]

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Underwater stereo using natural flickering illumination,” in Proceedings of MTS/IEEE Oceans (IEEE, 2010).
[CrossRef]

Szeliski, R.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[CrossRef]

Tonizzo, A.

Travis, L. D.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Treibitz, T.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Machine Intell. 31, 385–399(2009).
[CrossRef]

T. Treibitz, Y. Y. Schechner, and H. Singh, “Flat refractive geometry,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2008).

Troccoli, A.

A. Troccoli, S. B. Kang, and S. M. Seitz, “Multi-view multi-exposure stereo,” in Proceedings of 3D Data Processing, Visualization, and Transmission (2006), pp. 861–868.

Trucco, E.

E. Trucco and A. Verri, Introductory Techniques For 3D Computer Vision (Prentice Hall, 1998), Chap. 6.

Twardowski, M. S.

Vall-llossera, M.

J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.

Varju, D.

G. Horvath and D. Varju, “On the structure of the aerial visual field of aquatic animals distorted by refraction,” Bull. Math. Biol. 53, 425–441 (1991).

Verri, A.

E. Trucco and A. Verri, Introductory Techniques For 3D Computer Vision (Prentice Hall, 1998), Chap. 6.

Vesecky, J.

S. Durden and J. Vesecky, “A physical radar cross-section model for a wind-driven sea with swell,” IEEE J. Ocean. Eng. 10, 445–451 (1985).
[CrossRef]

Villarino, R.

J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.

Voss, K. J.

Waas, S.

B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994).
[CrossRef]

Walker, R.

A. Fraser, R. Walker, and F. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Ocean. Eng. 5, 195–198 (1980).
[CrossRef]

Walker, R. E.

R. E. Walker, Marine Light Field Statistics (John Wiley, 1994), Chap. 10.

Wettergreen, D.

M. Bryant, D. Wettergreen, S. Abdallah, and A. Zelinsky, “Robust camera calibration for an autonomous underwater vehicle,” in Proceedings of Australian Conference on Robotics and Automation (2000), pp. 111–116.

Widder, E. A.

S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011).
[CrossRef] [PubMed]

Zelinsky, A.

M. Bryant, D. Wettergreen, S. Abdallah, and A. Zelinsky, “Robust camera calibration for an autonomous underwater vehicle,” in Proceedings of Australian Conference on Robotics and Automation (2000), pp. 111–116.

Zhang, H.

Zhang, L.

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: shape recovery for dynamic scenes,” in Proceedings IEEE Computer Vision and Pattern Recognition (IEEE, 2003).

Zhou, J.

Zisserman, A.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003), Chaps. 9–12.

Anim. Behav.

D. C. Parkyn, J. D. Austin, and C. W. Hawryshyn, “Acquisition of polarized-light orientation in salmonids under laboratory conditions,” Anim. Behav. 65, 893–904 (2003).
[CrossRef]

Appl. Opt.

Biol. Bull.

T. W. Cronin and N. J. Marshall, “Parallel processing and image analysis in the eyes of mantis shrimps,” Biol. Bull. 200, 177–183 (2001).
[CrossRef] [PubMed]

Bull. Math. Biol.

G. Horvath and D. Varju, “On the structure of the aerial visual field of aquatic animals distorted by refraction,” Bull. Math. Biol. 53, 425–441 (1991).

Comput. Graphics

M. N. Gamito and F. K. Musgrave, “An accurate model of wave refraction over shallow water,” Comput. Graphics 26, 291–307 (2002).
[CrossRef]

Envir. Biol. Fish

W. N. McFarland and E. R. Loew, “Wave produced changes in underwater light and their relations to vision,” Envir. Biol. Fish 8, 173–184 (1983).
[CrossRef]

IEEE J. Ocean. Eng.

A. Fung and K. Lee, “A semi-empirical sea-spectrum model for scattering coefficient estimation,” IEEE J. Ocean. Eng. 7, 166–176 (1982).
[CrossRef]

Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Ocean. Eng. 30, 570–587 (2005).
[CrossRef]

A. Fraser, R. Walker, and F. Jurgens, “Spatial and temporal correlation of underwater sunlight fluctuations in the sea,” IEEE J. Ocean. Eng. 5, 195–198 (1980).
[CrossRef]

S. Durden and J. Vesecky, “A physical radar cross-section model for a wind-driven sea with swell,” IEEE J. Ocean. Eng. 10, 445–451 (1985).
[CrossRef]

J. S. Jaffe, “Computer modelling and the design of optimal underwater imaging systems,” IEEE J. Ocean. Eng. 15, 101–111 (1990).
[CrossRef]

IEEE Trans. Pattern Anal. Machine Intell.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Machine Intell. 31, 385–399(2009).
[CrossRef]

J. Davis, D. Nehab, R. Ramamoorthi, and S. Rusinkiewicz, “Spacetime stereo: a unifying framework for septh from triangulation,” IEEE Trans. Pattern Anal. Machine Intell. 27, 296–302 (2005).
[CrossRef]

Int. J. Comput. Vis.

D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo correspondence algorithms,” Int. J. Comput. Vis. 47, 7–42 (2002).
[CrossRef]

Int. J. Naut. Arch.

Y. Kahanov and J. Royal, “Analysis of hull remains of the Dor D vessel, Tantura Lagoon, Israel,” Int. J. Naut. Arch. 30, 257–265 (2001).

J. Exp. Biol.

L. M. Mathger, N. Shashar, and R. T. Hanlon, “Do cephalopods communicate using polarized light reflections from their skin?” J. Exp. Biol. 212, 2133–2140 (2009).
[CrossRef] [PubMed]

T. W. Cronin, J. N. Nair, R. D. Doyle, and R. L. Caldwell, “Ocular tracking of rapidly moving visual targets by stomatopod crustaceans,” J. Exp. Biol. 138, 155–179(1988).

J. Opt. Soc. Am.

C. Cox and W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44, 838–850 (1954).
[CrossRef]

B. Jahne, J. Klinke, and S. Waas, “Imaging of short ocean wind waves: a critical theoretical review,” J. Opt. Soc. Am. 11, 2197–2209 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

K. Kamiuto, “Study of the Henyey-Greenstein approximation to scattering phase functions,” J. Quant. Spectrosc. Radiat. Transfer 37, 411–413 (1987).
[CrossRef]

Mar. Technol. Soc. J.

D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008).
[CrossRef]

Opt. Express

Phil. Trans. R. Soc. B

S. Johnsen, N. J. Marshall, and E. A. Widder, “Polarization sensitivity as a contrast enhancer in pelagic predators: lessons from in situ polarization imaging of transparent zooplankton,” Phil. Trans. R. Soc. B 366, 655–670 (2011).
[CrossRef] [PubMed]

Space Sci. Rev.

J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994), Chaps. 3–5.

S. Darula and R. Kittler, “CIE general sky standard defining luminance distributions,” in Proceedings of the International Building Performance Simulation Association (IEEE, 2002).

R. W. Preisendorfer, Hydrologic Optics (U. S. Department of Commerce, 1976), Chaps. 1 and 12.

D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy and W. T. Jones, “Spectral reflectances of natural targets for use in remote sensing studies,” NASA Reference Publication A 1139 (1985), p. 141.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision (Cambridge University, 2003), Chaps. 9–12.

E. Trucco and A. Verri, Introductory Techniques For 3D Computer Vision (Prentice Hall, 1998), Chap. 6.

R. Eustice, O. Pizarro, H. Singh, and J. Howland, “UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab,” in Proceedings of International Symposium on Underwater Technology (IEEE, 2002), pp. 141–145.
[CrossRef]

A. Troccoli, S. B. Kang, and S. M. Seitz, “Multi-view multi-exposure stereo,” in Proceedings of 3D Data Processing, Visualization, and Transmission (2006), pp. 861–868.

Y. Swirski, Y. Y. Schechner, and T. Nir, “Variational stereo in dynamic illumination,” to appear in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2011).

T. Treibitz, Y. Y. Schechner, and H. Singh, “Flat refractive geometry,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 2008).

J. Miranda, A. Camps, J. Gomez, M. Vall-llossera, and R. Villarino, “Time-dependent sea surface numerical generation for remote sensing applications,” in Proceedings of International Geographic and Remote Sensing Symposium (IEEE, 2005), pp. 2527–2530.

M. Bryant, D. Wettergreen, S. Abdallah, and A. Zelinsky, “Robust camera calibration for an autonomous underwater vehicle,” in Proceedings of Australian Conference on Robotics and Automation (2000), pp. 111–116.

J. M. Lavest, F. Guichard, and C. Rousseau, “Multiview reconstruction combining underwater and air sensors,” in Proceedings of the IEEE International Conference on Image Proccessing (IEEE, 2000), pp. 813–816.

A. Sarafraz, S. Negahdaripour, and Y. Y. Schechner, “Enhancing images in scattering media utilizing stereovision and polarization,” in Proceedings of the IEEE Workshop Applications of Computer Vision (IEEE, 2009).

A. Fournier and W. T. Reeves, “A simple model of ocean waves,” in Proceedings of Special Interest Group on Computer Graphics and Interactive Technology, pp. 75–84 (1986).

Y. Y. Schechner and N. Karpel, “Attenuating natural flicker patterns,” in Proceedings of MTS/IEEE Oceans (IEEE, 2004), pp. 813–816.

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Stereo from flickering caustics,” in Proceedings of the IEEE International Conference on Computer Vision (IEEE, 2009), pp. 205–212.
[CrossRef]

Y. Swirski, Y. Y. Schechner, B. Herzberg, and S. Negahdaripour, “Underwater stereo using natural flickering illumination,” in Proceedings of MTS/IEEE Oceans (IEEE, 2010).
[CrossRef]

L. Zhang, B. Curless, and S. M. Seitz, “Spacetime stereo: shape recovery for dynamic scenes,” in Proceedings IEEE Computer Vision and Pattern Recognition (IEEE, 2003).

R. E. Walker, Marine Light Field Statistics (John Wiley, 1994), Chap. 10.

N. G. Jerlov, Marine Optics (Elsevier, 1976), Chap. 6.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).

N. Gracias, S. Negahdaripour, L. Neumann, R. Prados, and R. Garcia, “A motion compensated filtering approach to remove sunlight flicker in shallow water images,” in Proc. MTS/IEEE Oceans (IEEE, 2008).

D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed. (Cambridge University, 2001), Chaps. 3,4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Sunlight flicker irradiating a scene in a pool. (b) Underwater stereoscopic video setup in the Mediterranean. Taken from [21] with permission ©2009 IEEE.

Fig. 2
Fig. 2

Underwater stereoscopic pair consisting of two cameras inside housings. The cameras are separated by baseline b. An object point at distance Z obj is projected into the cameras at x L and x R . If correspondence between the cameras is known for the object point, it is possible to triangulate and calculate Z obj out of the disparity d between the viewpoints.

Fig. 3
Fig. 3

Left (a) and right (b) frames at one instance in the sequences. (c) Temporal plots of I ˜ L ( x L ) and I ˜ R ( x ^ R ) extracted from corresponding pixels. These pixels are marked by ⊗ in the respective frames. (d) Temporal plots of I ˜ L ( x L ) and I ˜ R ( x ^ R ) extracted from noncorresponding pixels. These pixels are marked by ⊗ and ⊙ in the respective frames.

Fig. 4
Fig. 4

(a) The estimated inverse disparity map 1 / d ^ of the pool experiment. The result in (a) is used for texture mapping a different viewpoint in (b).

Fig. 5
Fig. 5

(a) Raw left frame from an experiment in a marine archaeological site (Caesarea). (b) The estimated inverse disparity map. Black areas represent low correspondence reliability, as explained in Section 6. Taken from [21] with permission ©2009 IEEE.

Fig. 6
Fig. 6

(a)–(c) Raw left frames from the Red Sea experiment. (d) The estimated inverse disparity map. Black areas represent low correspondence reliability, as explained in Section 6.

Fig. 7
Fig. 7

A simulated water surface having random light rays refracted and attenuated. The faded red color represents attenuation of normalized irradiance, due to absorption and scattering.

Fig. 8
Fig. 8

A light ray passing through a voxel. A record of irradiance and direction of the ray at each temporal step is kept. The angle between LOS and the ray θ is calculated for backscatter calculations.

Fig. 9
Fig. 9

(a) Rendered signal. (b) Rendered backscatter pattern. (c) Rendered color image of an underwater scene.

Fig. 10
Fig. 10

(a)  S ¯ versus Z obj , for different light wavelengths. (b)  σ S versus Z obj , for different light wavelengths. (c)  ρ S versus Z obj , λ = 550 nm .

Fig. 11
Fig. 11

(a)  B ¯ versus Z obj , of different light wavelengths. (b)  σ B versus Z obj , of different light wavelengths. (c)  ρ B versus Z obj , λ = 550 nm .

Fig. 12
Fig. 12

(a) FSNR versus Z obj , of different light wavelengths. (b) The rate of successful match versus FSNR, λ = 550 nm .

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

d = x R x L .
Z obj = b F / d ,
S ( x ) = I obj ( x ) exp { η [ Z obj ( x ) Z h ] } ,
B ( x ) = z ˜ = Z h Z obj ( x ) I lighting ( z ˜ ) p ( θ ) exp ( η z ˜ ) d LOS x ,
B ( x ) = B ( 1 exp { η [ Z obj ( x ) Z h ] } ) ,
I ( x ) = S ( x ) + B ( x ) .
S L ( x L , m ) = I lighting ( x L , Z obj , m ) r L ( x L ) exp { η [ Z obj ( x L ) Z h ] } ,
S R ( x R , m ) = I lighting ( x L , Z obj , m ) r L ( x L ) exp { η [ Z obj ( x L ) Z h ] } f 1 ( x R ) f 2 ( x R ) = S L ( x R , m ) f 1 ( x R ) f 2 ( x R ) .
S L ( x L , m ) S R ( x R , m )     m .
B L ( x L , m ) = z ˜ = Z h Z obj ( x L ) I lighting ( z ˜ , m ) p ( θ L ) exp ( η z ˜ ) d LOS x L .
B R ( x R , m ) B L ( x L , m ) = B ( m ) ( 1 exp { η [ Z obj ( x L ) Z h ] } )     m .
I R ( x R , m ) I L ( x L , m )     m .
m = 1 N F Ω R ( m ) ,
I L ( x L ) [ I L ( x L , 1 ) , I L ( x L , 2 ) , , I L ( x L , N F ) ] T ,
I R ( x R cand ) [ I R ( x R cand , 1 ) , I R ( x R cand , 2 ) , , I R ( x R cand , N F ) ] T .
I ˜ L ( x L ) = I L ( x L ) I L ( x L ) ,
I ˜ R ( x R cand ) = I R ( x R cand ) I R ( x R cand ) .
C ( x R cand ) = [ I ˜ L ( x L ) T · I ˜ R ( x R cand ) ] / [ I ˜ L ( x L ) 2 I ˜ R ( x R cand ) 2 ] .
x ^ R = arg max x R cand Ψ C ( x R cand ) .
d ^ ( x L ) = x ^ R x L .
Ψ reliable = { x L : [ C x L > χ C ] AND [ I ˜ L ( x L ) 2 > χ STD ] } .
S ¯ ( x ) = ( 1 / N F ) m = 1 N F S ( x , m ) .
σ S ( x ) = { ( 1 / N F ) m = 1 N F [ S ( x , m ) S ¯ ( x ) ] 2 } 1 / 2 .
σ S ( Z ˜ obj ) = 1 | Θ ( Z ˜ obj ) | x Θ ( Z ˜ obj ) σ S ( x ) ,
Θ ( Z ˜ obj ) { x : Z obj ( x ) = Z ˜ obj } .
ρ S ( Z ˜ obj ) = σ S ( Z ˜ obj ) / S ¯ ( Z ˜ obj ) .
FSNR ( Z ˜ obj ) = σ S ( Z ˜ obj ) / σ B ( Z ˜ obj ) .
y ( w , t + Δ t ) = y ( w , t ) + c n c ^ ( w , t ) Δ t .
I lighting ( w , t + Δ t ) = I lighting ( w , t ) exp ( η c n Δ t ) .
Ω v ( t ) { w : y ( w , t ) v } .
ϒ v lighting = t w Ω v ( t ) I lighting ( w , t ) .
ϒ v directions = t w Ω v ( t ) c ^ ( w , t ) ,
p ( θ ) = ( 1 φ 2 ) / [ 4 π ( 1 + φ 2 2 φ cos θ ) 1.5 ] ,
ξ ( Δ r ) = h ( r ) , h ( r + Δ r ) ,
Γ ( k ) = F { ξ ( Δ r ) } .
Γ ( k , ϕ ) = k 1 ν ( k ) Φ ( k , ϕ ) ,
ω k = g k tanh ( k D ) + T W ζ W 1 k 3 .
H ˜ ( k , τ ) = H ˜ 0 ( k ) exp ( i ω k τ ) + H ˜ 0 * ( k ) exp ( i ω k τ ) ,
H ˜ 0 ( k ) = 2 1 μ k exp ( i κ k ) Γ ( k ) .
h ( r , τ ) = F 1 { H ˜ ( k , τ ) } .

Metrics