Abstract

Many physics processes underlying phenomena in atmospheric optics happen on a rather short time scale such that neither the human eye nor video cameras are able to analyze the details. We report applications of high-speed imaging of laboratory experiments in atmospheric optics with subsequent slow motion analysis. The potential to study respective transient effects is investigated in general and for a few phenomena in detail, in particular for rainbow scattering due to single oscillating droplets during free fall, and for light propagation effects through atmospheric paths with turbulences, leading, e.g., to scintillation of stars or shimmering of mirage images.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. J. Minnaert, Light and Color in the Outdoors (Springer, 1993).
    [CrossRef]
  2. R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).
  3. D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed (Cambridge University, 2001).
  4. M. Vollmer, “Optical phenomena in the atmosphere,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007), pp. 1182–1203.
  5. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).
  6. R. L. Lee and A. Fraser, The Rainbow Bridge—Rainbows in Art, Myth, and Science (Penn State University, 2001).
  7. J. W. S. Rayleigh, “On the capillary phenomena of jets,” Proc. R. Soc. London 29, 71–97 (1879).
    [CrossRef]
  8. K. V. Beard, H. T. Ochs, and R. J. Kubesh, “Natural oscillations of small raindrops,” Nature 342, 408–410 (1989).
    [CrossRef]
  9. J. Q. Feng and K. V. Beard, “A perturbation model of raindrop oscillation characteristics with aerodynamic effects,” J. Atmos. Sci. 48, 1856–1868 (1991).
    [CrossRef]
  10. M. Szakáll, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study on the shape, oscillation and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm,” J. Atmos. Sci. 66, 755–765 (2009).
    [CrossRef]
  11. J. E. McDonald, “The shape of raindrops,” Sci. Am. 190, 64–68 (1954).
    [CrossRef]
  12. A. B. Fraser, “Why can the supernumerary bows be seen in a rain shower,” J. Opt. Soc. Am. 73, 1626–1628 (1983).
    [CrossRef]
  13. G. P. Können, “Appearance of supernumeraries of the secondary rainbow in rain showers,” J. Opt. Soc. Am. A 4, 810–816(1987).
    [CrossRef]
  14. W. M. Protheroe, “Stellar scintillation,” Science 134, 1593–1599 (1961).
    [CrossRef] [PubMed]
  15. E. Jakeman, G. Parry, E. R. Pike, and P. N. Pusey, “The twinkling of stars,” Contemp Phys. 19, 127–145 (1978).
    [CrossRef]
  16. M. Vollmer and K.-P. Möllmann, “High speed—slow motion: technology of modern high speed cameras,” Phys. Educ. 46, 191–202 (2011).
    [CrossRef]
  17. M. Vollmer and K.-P. Möllmann, “Exploding balloons, deformed balls, strange reflections, and breaking rods: slow motion analysis of selected hands-on experiments,” Phys. Educ. 46, 472–485 (2011).
    [CrossRef]
  18. M. Vollmer and K.-P. Möllmann, “Ring falling into a chain: no magic—just physics,” Phys. Teach. 49, 337–339 (2011).
    [CrossRef]
  19. M. A. Uman, Lightning (Dover, 1969).
  20. M. Vollmer and R. Tammer, “Laboratory experiments in atmospheric optics,” Appl. Opt. 37, 1557–1568 (1998).
    [CrossRef]
  21. M. Vollmer, “Mirrors in the air: mirages in nature and in the laboratory,” Phys. Educ. 44, 165–174 (2009).
    [CrossRef]
  22. D. L. Fried, “Probability of getting a lucky short-exposure image through turbulence,” J. Opt. Soc. Am. 68, 1651–1658(1978).
    [CrossRef]

2011

M. Vollmer and K.-P. Möllmann, “High speed—slow motion: technology of modern high speed cameras,” Phys. Educ. 46, 191–202 (2011).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “Exploding balloons, deformed balls, strange reflections, and breaking rods: slow motion analysis of selected hands-on experiments,” Phys. Educ. 46, 472–485 (2011).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “Ring falling into a chain: no magic—just physics,” Phys. Teach. 49, 337–339 (2011).
[CrossRef]

2009

M. Vollmer, “Mirrors in the air: mirages in nature and in the laboratory,” Phys. Educ. 44, 165–174 (2009).
[CrossRef]

M. Szakáll, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study on the shape, oscillation and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm,” J. Atmos. Sci. 66, 755–765 (2009).
[CrossRef]

1998

1991

J. Q. Feng and K. V. Beard, “A perturbation model of raindrop oscillation characteristics with aerodynamic effects,” J. Atmos. Sci. 48, 1856–1868 (1991).
[CrossRef]

1989

K. V. Beard, H. T. Ochs, and R. J. Kubesh, “Natural oscillations of small raindrops,” Nature 342, 408–410 (1989).
[CrossRef]

1987

1983

1978

E. Jakeman, G. Parry, E. R. Pike, and P. N. Pusey, “The twinkling of stars,” Contemp Phys. 19, 127–145 (1978).
[CrossRef]

D. L. Fried, “Probability of getting a lucky short-exposure image through turbulence,” J. Opt. Soc. Am. 68, 1651–1658(1978).
[CrossRef]

1961

W. M. Protheroe, “Stellar scintillation,” Science 134, 1593–1599 (1961).
[CrossRef] [PubMed]

1954

J. E. McDonald, “The shape of raindrops,” Sci. Am. 190, 64–68 (1954).
[CrossRef]

1879

J. W. S. Rayleigh, “On the capillary phenomena of jets,” Proc. R. Soc. London 29, 71–97 (1879).
[CrossRef]

Beard, K. V.

J. Q. Feng and K. V. Beard, “A perturbation model of raindrop oscillation characteristics with aerodynamic effects,” J. Atmos. Sci. 48, 1856–1868 (1991).
[CrossRef]

K. V. Beard, H. T. Ochs, and R. J. Kubesh, “Natural oscillations of small raindrops,” Nature 342, 408–410 (1989).
[CrossRef]

Borrmann, S.

M. Szakáll, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study on the shape, oscillation and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm,” J. Atmos. Sci. 66, 755–765 (2009).
[CrossRef]

Diehl, K.

M. Szakáll, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study on the shape, oscillation and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm,” J. Atmos. Sci. 66, 755–765 (2009).
[CrossRef]

Feng, J. Q.

J. Q. Feng and K. V. Beard, “A perturbation model of raindrop oscillation characteristics with aerodynamic effects,” J. Atmos. Sci. 48, 1856–1868 (1991).
[CrossRef]

Fraser, A.

R. L. Lee and A. Fraser, The Rainbow Bridge—Rainbows in Art, Myth, and Science (Penn State University, 2001).

Fraser, A. B.

Fried, D. L.

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).

Jakeman, E.

E. Jakeman, G. Parry, E. R. Pike, and P. N. Pusey, “The twinkling of stars,” Contemp Phys. 19, 127–145 (1978).
[CrossRef]

Klett, J. D.

H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).

Können, G. P.

Kubesh, R. J.

K. V. Beard, H. T. Ochs, and R. J. Kubesh, “Natural oscillations of small raindrops,” Nature 342, 408–410 (1989).
[CrossRef]

Lee, R. L.

R. L. Lee and A. Fraser, The Rainbow Bridge—Rainbows in Art, Myth, and Science (Penn State University, 2001).

Livingston, W.

D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed (Cambridge University, 2001).

Lynch, D. K.

D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed (Cambridge University, 2001).

McDonald, J. E.

J. E. McDonald, “The shape of raindrops,” Sci. Am. 190, 64–68 (1954).
[CrossRef]

Minnaert, M. G. J.

M. G. J. Minnaert, Light and Color in the Outdoors (Springer, 1993).
[CrossRef]

Mitra, S. K.

M. Szakáll, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study on the shape, oscillation and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm,” J. Atmos. Sci. 66, 755–765 (2009).
[CrossRef]

Möllmann, K.-P.

M. Vollmer and K.-P. Möllmann, “High speed—slow motion: technology of modern high speed cameras,” Phys. Educ. 46, 191–202 (2011).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “Ring falling into a chain: no magic—just physics,” Phys. Teach. 49, 337–339 (2011).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “Exploding balloons, deformed balls, strange reflections, and breaking rods: slow motion analysis of selected hands-on experiments,” Phys. Educ. 46, 472–485 (2011).
[CrossRef]

Ochs, H. T.

K. V. Beard, H. T. Ochs, and R. J. Kubesh, “Natural oscillations of small raindrops,” Nature 342, 408–410 (1989).
[CrossRef]

Parry, G.

E. Jakeman, G. Parry, E. R. Pike, and P. N. Pusey, “The twinkling of stars,” Contemp Phys. 19, 127–145 (1978).
[CrossRef]

Pike, E. R.

E. Jakeman, G. Parry, E. R. Pike, and P. N. Pusey, “The twinkling of stars,” Contemp Phys. 19, 127–145 (1978).
[CrossRef]

Protheroe, W. M.

W. M. Protheroe, “Stellar scintillation,” Science 134, 1593–1599 (1961).
[CrossRef] [PubMed]

Pruppacher, H. R.

H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).

Pusey, P. N.

E. Jakeman, G. Parry, E. R. Pike, and P. N. Pusey, “The twinkling of stars,” Contemp Phys. 19, 127–145 (1978).
[CrossRef]

Rayleigh, J. W. S.

J. W. S. Rayleigh, “On the capillary phenomena of jets,” Proc. R. Soc. London 29, 71–97 (1879).
[CrossRef]

Szakáll, M.

M. Szakáll, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study on the shape, oscillation and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm,” J. Atmos. Sci. 66, 755–765 (2009).
[CrossRef]

Tammer, R.

Uman, M. A.

M. A. Uman, Lightning (Dover, 1969).

Vollmer, M.

M. Vollmer and K.-P. Möllmann, “Exploding balloons, deformed balls, strange reflections, and breaking rods: slow motion analysis of selected hands-on experiments,” Phys. Educ. 46, 472–485 (2011).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “Ring falling into a chain: no magic—just physics,” Phys. Teach. 49, 337–339 (2011).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “High speed—slow motion: technology of modern high speed cameras,” Phys. Educ. 46, 191–202 (2011).
[CrossRef]

M. Vollmer, “Mirrors in the air: mirages in nature and in the laboratory,” Phys. Educ. 44, 165–174 (2009).
[CrossRef]

M. Vollmer and R. Tammer, “Laboratory experiments in atmospheric optics,” Appl. Opt. 37, 1557–1568 (1998).
[CrossRef]

M. Vollmer, “Optical phenomena in the atmosphere,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007), pp. 1182–1203.

Appl. Opt.

Contemp Phys.

E. Jakeman, G. Parry, E. R. Pike, and P. N. Pusey, “The twinkling of stars,” Contemp Phys. 19, 127–145 (1978).
[CrossRef]

J. Atmos. Sci.

J. Q. Feng and K. V. Beard, “A perturbation model of raindrop oscillation characteristics with aerodynamic effects,” J. Atmos. Sci. 48, 1856–1868 (1991).
[CrossRef]

M. Szakáll, K. Diehl, S. K. Mitra, and S. Borrmann, “A wind tunnel study on the shape, oscillation and internal circulation of large raindrops with sizes between 2.5 and 7.5 mm,” J. Atmos. Sci. 66, 755–765 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature

K. V. Beard, H. T. Ochs, and R. J. Kubesh, “Natural oscillations of small raindrops,” Nature 342, 408–410 (1989).
[CrossRef]

Phys. Educ.

M. Vollmer, “Mirrors in the air: mirages in nature and in the laboratory,” Phys. Educ. 44, 165–174 (2009).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “High speed—slow motion: technology of modern high speed cameras,” Phys. Educ. 46, 191–202 (2011).
[CrossRef]

M. Vollmer and K.-P. Möllmann, “Exploding balloons, deformed balls, strange reflections, and breaking rods: slow motion analysis of selected hands-on experiments,” Phys. Educ. 46, 472–485 (2011).
[CrossRef]

Phys. Teach.

M. Vollmer and K.-P. Möllmann, “Ring falling into a chain: no magic—just physics,” Phys. Teach. 49, 337–339 (2011).
[CrossRef]

Proc. R. Soc. London

J. W. S. Rayleigh, “On the capillary phenomena of jets,” Proc. R. Soc. London 29, 71–97 (1879).
[CrossRef]

Sci. Am.

J. E. McDonald, “The shape of raindrops,” Sci. Am. 190, 64–68 (1954).
[CrossRef]

Science

W. M. Protheroe, “Stellar scintillation,” Science 134, 1593–1599 (1961).
[CrossRef] [PubMed]

Other

M. G. J. Minnaert, Light and Color in the Outdoors (Springer, 1993).
[CrossRef]

R. Greenler, Rainbows, Halos, and Glories (Cambridge University, 1980).

D. K. Lynch and W. Livingston, Color and Light in Nature, 2nd ed (Cambridge University, 2001).

M. Vollmer, “Optical phenomena in the atmosphere,” in Springer Handbook of Lasers and Optics, F.Träger, ed. (Springer, 2007), pp. 1182–1203.

H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic, 1997).

R. L. Lee and A. Fraser, The Rainbow Bridge—Rainbows in Art, Myth, and Science (Penn State University, 2001).

M. A. Uman, Lightning (Dover, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Example of a Styrofoam hexagonal plate, which stays oriented during free fall. The two shadows are due to the illumination.

Fig. 2
Fig. 2

Falling droplets (sizes about 5 mm ) from a faucet oscillate between hamburger bun and cigar like shapes. The periods between the first and the other three images are 16 ms , 31 ms , and 47 ms . Images were recorded with 4000 fps and an integration time of 1 / 5000 s .

Fig. 3
Fig. 3

Artificial lightning, i.e., an arc, observed without (right) and another one observed through (left) a diffraction grating using 20 , 000 fps and shutter open. The spectral lines correspond to emission lines mostly of N, O, N + , O + , and some of N 2 , O 2 , N 2 + , and a few other species.

Fig. 4
Fig. 4

Experimental setup for studying time evolution of rainbow scattering of single droplets as seen from top (top) and from the side (bottom).

Fig. 5
Fig. 5

Scheme for visualizing the successive rainbow scattering contributions while looking parallel to the green laser beam. Top: While a large droplet is in free fall (from left to right), it has partial overlap with the laser beam. The broken lines indicate angular regions contributing to rainbow scattering. Bottom: If fully illuminated, the rainbow scattered light cone cuts out a circular shape on a projection screen (corresponding to 42 ° angular distance from center). The broken lines, which rotate from left to right, again indicate the angular regions where scattered light is present due to the respective overlap of laser and droplet. The broken line rectangle indicates the relevant part of the detected angular range of the camera. (More details, see text.)

Fig. 6
Fig. 6

Six snapshots (in 5 ms intervals) of rainbow scattering contributions of a single droplet as function of position, i.e., falling time, recorded with 1000 fps , integration time of 1 / 1000 s .

Fig. 7
Fig. 7

Superposition of individual images of rainbow scattered light. Left: About 32 superimposed individual images such as shown in Fig. 6. The resulting feature resembles an artificial long exposure recording of a rainbow scattering event of a single oscillating falling droplet. Right: Theoretical expectations for a falling and a still droplet.

Fig. 8
Fig. 8

Experimental setup for air turbulence experiments with lasers.

Fig. 9
Fig. 9

Eight snapshots of a section of the projection screen with the green laser spot, recorded with the high-speed NAC camera with 4000 fps and an integration time of 1 / 10 , 000 s . The white grid (scale 3 cm ) was superimposed for simplifying the analysis. The laser beam statistically changes position with a time scale of about 1 ms .

Metrics