Abstract

A Raman multispectral imaging technique is presented, which can be used for stand-off detection of single explosives particles. A frequency-doubled Nd:YAG laser operating at 10Hz illuminates the surface under investigation. The backscattered Raman signal is collected by a receiver subsystem consisting of a 150mm Schmidt–Cassegrain telescope, a laser line edge filter, a liquid-crystal tunable filter, and a gated intensified charge-coupled device (ICCD) detector. A sequence of images is recorded by the ICCD, where, for each recording, a different wavelength is selected by the tunable filter. By this, a Raman spectrum is recorded for each pixel, which makes it possible to detect even single particles when compared to known spectra for possible explosives. The comparison is made using correlation and least-square fitting. The system is relatively insensitive to environment and light variations. Multispectral Raman images of sulfur, ammonium nitrate, 2,4-dinitrotoluene, and 2,4,6-trinitrotoluene were acquired at a stand-off distance of 10m. Detection of sulfur particles was done at a distance of 10m.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Menning and H. Östmark, “Detection of liquid and homemade explosives: what do we need to know about their properties?” in Proceedings of the NATO Advanced Research Workshop on Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism (Springer, 2007), pp. 55–70.
  2. S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
    [CrossRef] [PubMed]
  3. J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
    [CrossRef] [PubMed]
  4. S. K. Sharma, A. K. Mistra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta A 61, 2404–2412 (2005).
    [CrossRef]
  5. J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769–775 (2005).
    [CrossRef] [PubMed]
  6. J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
    [CrossRef]
  7. J. Oxley, J. Smith, J. Brady, F. Dubnikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62, 906–915(2008).
    [CrossRef] [PubMed]
  8. R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapour pressure measurements on some organic high explosives,” J. Chem. Soc. Faraday Trans. I 74, 1339–1345 (1978).
    [CrossRef]
  9. R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
    [CrossRef] [PubMed]
  10. G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
    [CrossRef]
  11. H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
    [CrossRef]
  12. M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30, 1739–1746(2008).
    [CrossRef]
  13. L. Naglia, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30, 1747–1754 (2008).
    [CrossRef]
  14. A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
    [CrossRef]
  15. A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
    [CrossRef]
  16. M. Nordberg, F. Akke, and A. Pettersson, “Detection limits of stand-off spontaneous Raman scattering,” FOI-R--2794--SE (Swedish Defence Research Agency, 2009).
  17. J. R. Verkouteren, “Particle characteristics of trace high explosives: RDX and PETN,” J. Forensic Sci. 52, 335–340(2007).
    [CrossRef] [PubMed]
  18. R. M. Wentworth, J. Neiss, M. P. Nelson, and P. J. Treado, “Standoff Raman hyperspectral imaging detection of explosives,” in 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4925–4928.
    [CrossRef]
  19. http://chemimage.com/markets/threat-detection/explosive/index.aspx, 23 April 2011.
  20. X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
    [CrossRef]

2010 (1)

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

2009 (4)

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
[CrossRef]

2008 (3)

J. Oxley, J. Smith, J. Brady, F. Dubnikova, R. Kosloff, L. Zeiri, and Y. Zeiri, “Raman and infrared fingerprint spectroscopy of peroxide-based explosives,” Appl. Spectrosc. 62, 906–915(2008).
[CrossRef] [PubMed]

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30, 1739–1746(2008).
[CrossRef]

L. Naglia, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30, 1747–1754 (2008).
[CrossRef]

2007 (1)

J. R. Verkouteren, “Particle characteristics of trace high explosives: RDX and PETN,” J. Forensic Sci. 52, 335–340(2007).
[CrossRef] [PubMed]

2006 (1)

X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
[CrossRef]

2005 (3)

S. K. Sharma, A. K. Mistra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta A 61, 2404–2412 (2005).
[CrossRef]

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769–775 (2005).
[CrossRef] [PubMed]

1998 (1)

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

1994 (1)

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

1978 (1)

R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapour pressure measurements on some organic high explosives,” J. Chem. Soc. Faraday Trans. I 74, 1339–1345 (1978).
[CrossRef]

Akke, F.

M. Nordberg, F. Akke, and A. Pettersson, “Detection limits of stand-off spontaneous Raman scattering,” FOI-R--2794--SE (Swedish Defence Research Agency, 2009).

Al-Khalili, A.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

Angel, S. M.

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769–775 (2005).
[CrossRef] [PubMed]

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

Batchelder, D. N.

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

Bennett, R.

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

Blackwood, L. G.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

Bos, P. J.

X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
[CrossRef]

Brady, J.

Burnett, S.

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

Carter, J. C.

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769–775 (2005).
[CrossRef] [PubMed]

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

Cundall, R. B.

R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapour pressure measurements on some organic high explosives,” J. Chem. Soc. Faraday Trans. I 74, 1339–1345 (1978).
[CrossRef]

Davies, J. P.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

De Lucia, F. C.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Dubnikova, F.

Ehlerding, A.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

Ellis, H.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

Fleger, Y.

L. Naglia, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30, 1747–1754 (2008).
[CrossRef]

Fountain, A. W.

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

Gaft, M.

L. Naglia, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30, 1747–1754 (2008).
[CrossRef]

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30, 1739–1746(2008).
[CrossRef]

Goodrich, L. D.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

Gottfried, J. L.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Gregory, K. C.

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

Gresham, G. L.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

Hallowell, S. F.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

Hardy, D.

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

Hayward, I. P.

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

Hobro, A.

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

Johansson, I.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
[CrossRef]

Kirkbride, T. E.

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

Kosloff, R.

Kunz, R. R.

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

Lacey, R. J.

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

Lawrence-Snyder, M.

Liu, B. Y.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

Menning, D.

D. Menning and H. Östmark, “Detection of liquid and homemade explosives: what do we need to know about their properties?” in Proceedings of the NATO Advanced Research Workshop on Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism (Springer, 2007), pp. 55–70.

Mistra, A. K.

S. K. Sharma, A. K. Mistra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta A 61, 2404–2412 (2005).
[CrossRef]

Miziolek, A. W.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Nagli, L.

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30, 1739–1746(2008).
[CrossRef]

Naglia, L.

L. Naglia, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30, 1747–1754 (2008).
[CrossRef]

Neiss, J.

R. M. Wentworth, J. Neiss, M. P. Nelson, and P. J. Treado, “Standoff Raman hyperspectral imaging detection of explosives,” in 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4925–4928.
[CrossRef]

Nelson, M. P.

X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
[CrossRef]

R. M. Wentworth, J. Neiss, M. P. Nelson, and P. J. Treado, “Standoff Raman hyperspectral imaging detection of explosives,” in 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4925–4928.
[CrossRef]

Nordberg, M.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
[CrossRef]

M. Nordberg, F. Akke, and A. Pettersson, “Detection limits of stand-off spontaneous Raman scattering,” FOI-R--2794--SE (Swedish Defence Research Agency, 2009).

Ostazeski, S. A.

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

Östmark, H.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
[CrossRef]

D. Menning and H. Östmark, “Detection of liquid and homemade explosives: what do we need to know about their properties?” in Proceedings of the NATO Advanced Research Workshop on Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism (Springer, 2007), pp. 55–70.

Oxley, J.

Oyler, J.

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

Palmer, T. F.

R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapour pressure measurements on some organic high explosives,” J. Chem. Soc. Faraday Trans. I 74, 1339–1345 (1978).
[CrossRef]

Pettersson, A.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
[CrossRef]

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

M. Nordberg, F. Akke, and A. Pettersson, “Detection limits of stand-off spontaneous Raman scattering,” FOI-R--2794--SE (Swedish Defence Research Agency, 2009).

Reynolds, J. G.

Rosenbluh, M.

L. Naglia, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30, 1747–1754 (2008).
[CrossRef]

Sands, H. S.

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

Scaffidi, J.

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

J. C. Carter, S. M. Angel, M. Lawrence-Snyder, J. Scaffidi, R. E. Whipple, and J. G. Reynolds, “Standoff detection of high explosive materials at 50 meters in ambient light conditions using a small Raman instrument,” Appl. Spectrosc. 59, 769–775 (2005).
[CrossRef] [PubMed]

Sharma, B.

S. K. Sharma, A. K. Mistra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta A 61, 2404–2412 (2005).
[CrossRef]

Sharma, S. K.

S. K. Sharma, A. K. Mistra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta A 61, 2404–2412 (2005).
[CrossRef]

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

Smith, J.

Thimsen, D.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

Treado, P. J.

X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
[CrossRef]

R. M. Wentworth, J. Neiss, M. P. Nelson, and P. J. Treado, “Standoff Raman hyperspectral imaging detection of explosives,” in 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4925–4928.
[CrossRef]

Vasser, B.

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

Verkouteren, J. R.

J. R. Verkouteren, “Particle characteristics of trace high explosives: RDX and PETN,” J. Forensic Sci. 52, 335–340(2007).
[CrossRef] [PubMed]

Voigt, T. C.

X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
[CrossRef]

Wallin, S.

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
[CrossRef]

Wang, X.

X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
[CrossRef]

Wentworth, R. M.

R. M. Wentworth, J. Neiss, M. P. Nelson, and P. J. Treado, “Standoff Raman hyperspectral imaging detection of explosives,” in 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4925–4928.
[CrossRef]

Whipple, R. E.

Wood, C. E. C.

R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapour pressure measurements on some organic high explosives,” J. Chem. Soc. Faraday Trans. I 74, 1339–1345 (1978).
[CrossRef]

Yoo, S. H.

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

Zeiri, L.

Zeiri, Y.

Anal. Bioanal. Chem. (3)

R. R. Kunz, K. C. Gregory, D. Hardy, J. Oyler, S. A. Ostazeski, and A. W. Fountain, III, “Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations,” Anal. Bioanal. Chem. 395, 357–369 (2009).
[CrossRef] [PubMed]

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395, 259–274 (2009).
[CrossRef] [PubMed]

J. L. Gottfried, F. C. De Lucia, C. A. Munson, and A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395, 283–300 (2009).
[CrossRef] [PubMed]

Appl. Spectrosc. (2)

J. Chem. Soc. Faraday Trans. I (1)

R. B. Cundall, T. F. Palmer, and C. E. C. Wood, “Vapour pressure measurements on some organic high explosives,” J. Chem. Soc. Faraday Trans. I 74, 1339–1345 (1978).
[CrossRef]

J. Forensic Sci. (2)

J. R. Verkouteren, “Particle characteristics of trace high explosives: RDX and PETN,” J. Forensic Sci. 52, 335–340(2007).
[CrossRef] [PubMed]

H. S. Sands, I. P. Hayward, T. E. Kirkbride, R. Bennett, R. J. Lacey, and D. N. Batchelder, “UV-excited resonance Raman spectroscopy of narcotics and explosives,” J. Forensic Sci. 43, 509–513 (1998).
[CrossRef]

Opt. Mater. (2)

M. Gaft and L. Nagli, “UV gated Raman spectroscopy for standoff detection of explosives,” Opt. Mater. 30, 1739–1746(2008).
[CrossRef]

L. Naglia, M. Gaft, Y. Fleger, and M. Rosenbluh, “Absolute Raman cross-sections of some explosives: trend to UV,” Opt. Mater. 30, 1747–1754 (2008).
[CrossRef]

Proc. SPIE (3)

G. L. Gresham, J. P. Davies, L. D. Goodrich, L. G. Blackwood, B. Y. Liu, D. Thimsen, S. H. Yoo, and S. F. Hallowell, “Development of particle standards for testing detection systems: mass of RDX and particle size distribution of composition 4 residues,” Proc. SPIE 2276, 34–44 (1994).
[CrossRef]

A. Pettersson, S. Wallin, H. Östmark, A. Ehlerding, I. Johansson, M. Nordberg, H. Ellis, and A. Al-Khalili, “Explosives standoff detection using Raman spectroscopy: from bulk towards trace detection,” Proc. SPIE 7664, 76641K(2010).
[CrossRef]

X. Wang, T. C. Voigt, P. J. Bos, M. P. Nelson, and P. J. Treado, “Evaluation of a high throughput liquid crystal tunable filter for Raman chemical imaging of threat materials,” Proc. SPIE 6378, 637808 (2006).
[CrossRef]

Propellants Explos. Pyrotech. (1)

A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, and H. Östmark, “Near real-time standoff detection of explosives in a realistic outdoor environment at 55 m distance,” Propellants Explos. Pyrotech. 34, 297–306 (2009).
[CrossRef]

Spectrochim. Acta A (2)

S. K. Sharma, A. K. Mistra, and B. Sharma, “Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment,” Spectrochim. Acta A 61, 2404–2412 (2005).
[CrossRef]

J. C. Carter, J. Scaffidi, S. Burnett, B. Vasser, S. K. Sharma, and S. M. Angel, “Stand-off Raman detection using dispersive and tunable filter based systems,” Spectrochim. Acta A 61, 2288–2298 (2005).
[CrossRef]

Other (4)

D. Menning and H. Östmark, “Detection of liquid and homemade explosives: what do we need to know about their properties?” in Proceedings of the NATO Advanced Research Workshop on Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism (Springer, 2007), pp. 55–70.

R. M. Wentworth, J. Neiss, M. P. Nelson, and P. J. Treado, “Standoff Raman hyperspectral imaging detection of explosives,” in 2007 IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 4925–4928.
[CrossRef]

http://chemimage.com/markets/threat-detection/explosive/index.aspx, 23 April 2011.

M. Nordberg, F. Akke, and A. Pettersson, “Detection limits of stand-off spontaneous Raman scattering,” FOI-R--2794--SE (Swedish Defence Research Agency, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Outline of experimental setup.

Fig. 2
Fig. 2

Detailed experimental setup. A frequency-doubled Nd:YAG laser at 532 nm illuminates the investigated surface, and the backscattered Raman light is collected by a telescope. The light is split into two parts; one part is focused onto a CCD camera to record a white-light image while the other one is focused onto an ICCD camera that records the Raman intensity. In front of the ICCD, an LCTF with a narrow bandwidth is used for wavelength tuning.

Fig. 3
Fig. 3

Detected samples imaged at 10 m distance with the CCD camera. The four samples are, starting from left, sulfur, DNT, ammonium nitrate, and TNT. The samples are 5 mm in diameter.

Fig. 4
Fig. 4

Reference spectra for ammonium nitrate, DNT, sulfur, and TNT (the sulfur spectrum is scaled by 0.05).

Fig. 5
Fig. 5

Intensity image taken at a wavenumber shift of 473 cm 1 from the laser line, corresponding to a Raman line in sulfur.

Fig. 6
Fig. 6

Intensity image taken at a wavenumber shift of 1043 cm 1 from the laser line, corresponding to a Raman line in ammonium nitrate.

Fig. 7
Fig. 7

Intensity image taken at a wavenumber shift of 1347 cm 1 from the laser line corresponding to a Raman line in DNT.

Fig. 8
Fig. 8

Intensity image taken at a wavenumber shift of 1358 cm 1 from the laser line corresponding to a Raman line in TNT.

Fig. 9
Fig. 9

(left) White-light image and (right) sum of all recorded images. The white-light image is recorded by the CCD camera after the last spectral image was recorded. It can be seen that the piece of sulfur has a more intense Raman intensity then the other samples.

Fig. 10
Fig. 10

Image sequence correlated to different spectra. The red “blob” at the right side of the sulfur image (also seen as blue in the other images) is due to a piece of sulfur smeared at a brick behind the samples (out of focus).

Fig. 11
Fig. 11

Difference DNT and TNT.

Fig. 12
Fig. 12

Image sequence least-square fitted to different spectra.

Fig. 13
Fig. 13

(left) Color-identified identification due to the least-square rank. (right) Determination coefficient for the identification color coded from zero (blue) to one (red).

Fig. 14
Fig. 14

(left) Sulfur spectrum correlated fingerprint. (right) Image recorded by the CCD camera at the same time.

Tables (2)

Tables Icon

Table 1 Selected Wavenumbers for the Image Sequence and Corresponding Intensities for the Different Samples

Tables Icon

Table 2 Correlation between Spectra

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

c ( x , y ) = κ ( P ( κ i ) P ( κ i ) ¯ ) · ( b ( x , y , κ i ) b ( x , y , κ i ) ¯ ) κ ( P ( κ i ) P ( κ i ) ¯ ) 2 ( b ( x , y , κ i ) b ( x , y , κ i ) ¯ ) 2 ,
b ( x , y , κ i ) = a 0 ( x , y ) + a S ( x , y ) P s ( κ i ) + a AN ( x , y ) P AN ( κ i ) + ... + a DNT ( x , y ) P DNT ( κ i ) + a TNT ( x , y ) P TNT ( κ i ) + η ( κ i ) ,
b = Pa + η ,
b = [ b ( κ 1 ) b ( κ 2 ) .. b ( κ n ) ] ,
P = [ 1 P S ( κ 1 ) P AN ( κ 1 ) P DNT ( κ 1 ) P TNT ( κ 1 ) 1 P S ( κ 2 ) P AN ( κ 2 ) P DNT ( κ 2 ) P TNT ( κ 2 ) .. .. .. .. .. 1 P S ( κ n ) P AN ( κ n ) P DNT ( κ n ) P TNT ( κ n ) ] ,
a = [ a 0 a S a AN a DNT a TNT ] ,
a = ( P T P ) - 1 P T b .

Metrics