Abstract

Dichromated gelatin (DCG) is one of the best light-sensitive materials for holographic recording. However, strict technological control should be observed during deposition, gelation, and drying of DCG plates and the chemical processing of the recorded structures. Usually, for reflection holograms the gelatin layer should be sealed in order to protect it from ambient humidity, which affects the value and position of the reflection maximum. Herein we give three different recipes for tuning the reflection maximum from 430 to 700nm by swelling the hologram thickness with a filler material that is commercially available. The mechanism of the hologram swelling, which changes the period of the recorded holographic structure, is also briefly discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Shankoff, “Phase holograms in dichromated gelatin,” Appl. Opt. 7, 2101–2105 (1968).
    [CrossRef] [PubMed]
  2. B. J. Chang and C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt. 18, 2407–2417 (1979).
    [CrossRef] [PubMed]
  3. B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).
  4. R. A. Cullen, “Some characteristics of and measurements on dichromated gelatin reflection holograms,” Proc. SPIE 369, 647–654 (1983).
  5. T. Keinonen and O. Salminen, “Influence of some development parameters on the reflection grating structure in dichromated gelatin,” Appl. Opt. 27, 2573–2579 (1988).
    [CrossRef] [PubMed]
  6. C. G. Stojanoff, Ph. Fröning, and J. Schulat, “The use of filler material in DCG films for predictable shift of the spectral characteristics of holograms,” Proc. SPIE 3638, 61–71 (1999).
    [CrossRef]
  7. C. G. Stojanoff, “A review of selected technical applications of DCG holography,” Proc. SPIE 7957, 7957OL (2011).
    [CrossRef]
  8. M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part I,” Opt. Quantum Electron. 14, 311–315 (1982).
    [CrossRef]
  9. M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part II,” Opt. Quantum Electron. 14, 317–320 (1982).
    [CrossRef]
  10. M. Mazakova, M. Pantcheva, P. Sharlandjiev, and G. Spassov, “Electron donors and heat treatment: their effect on diffraction efficiency of DCG reflection holograms,” Appl. Opt. 24, 2156–2160 (1985).
    [CrossRef] [PubMed]
  11. P. Sharlandjiev and B. Markova, “Hologram formation in dichromated gelatin: an approach based on light scattering from nanoparticles,” J. Mater. Sci. 14, 863–864 (2003).
    [CrossRef]
  12. P. Sharlandjiev and B. Markova, “DCG holograms as nanosized composite film elements,” Proc. SPIE 6252, 6252OQ (2006).
    [CrossRef]

2011

C. G. Stojanoff, “A review of selected technical applications of DCG holography,” Proc. SPIE 7957, 7957OL (2011).
[CrossRef]

2006

P. Sharlandjiev and B. Markova, “DCG holograms as nanosized composite film elements,” Proc. SPIE 6252, 6252OQ (2006).
[CrossRef]

2003

P. Sharlandjiev and B. Markova, “Hologram formation in dichromated gelatin: an approach based on light scattering from nanoparticles,” J. Mater. Sci. 14, 863–864 (2003).
[CrossRef]

1999

C. G. Stojanoff, Ph. Fröning, and J. Schulat, “The use of filler material in DCG films for predictable shift of the spectral characteristics of holograms,” Proc. SPIE 3638, 61–71 (1999).
[CrossRef]

1988

1985

1983

R. A. Cullen, “Some characteristics of and measurements on dichromated gelatin reflection holograms,” Proc. SPIE 369, 647–654 (1983).

1982

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part I,” Opt. Quantum Electron. 14, 311–315 (1982).
[CrossRef]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part II,” Opt. Quantum Electron. 14, 317–320 (1982).
[CrossRef]

1980

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).

1979

1968

Chang, B. J.

Cullen, R. A.

R. A. Cullen, “Some characteristics of and measurements on dichromated gelatin reflection holograms,” Proc. SPIE 369, 647–654 (1983).

Fröning, Ph.

C. G. Stojanoff, Ph. Fröning, and J. Schulat, “The use of filler material in DCG films for predictable shift of the spectral characteristics of holograms,” Proc. SPIE 3638, 61–71 (1999).
[CrossRef]

Kandilarov, P.

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part I,” Opt. Quantum Electron. 14, 311–315 (1982).
[CrossRef]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part II,” Opt. Quantum Electron. 14, 317–320 (1982).
[CrossRef]

Keinonen, T.

Leonard, C. D.

Markova, B.

P. Sharlandjiev and B. Markova, “DCG holograms as nanosized composite film elements,” Proc. SPIE 6252, 6252OQ (2006).
[CrossRef]

P. Sharlandjiev and B. Markova, “Hologram formation in dichromated gelatin: an approach based on light scattering from nanoparticles,” J. Mater. Sci. 14, 863–864 (2003).
[CrossRef]

Mazakova, M.

M. Mazakova, M. Pantcheva, P. Sharlandjiev, and G. Spassov, “Electron donors and heat treatment: their effect on diffraction efficiency of DCG reflection holograms,” Appl. Opt. 24, 2156–2160 (1985).
[CrossRef] [PubMed]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part I,” Opt. Quantum Electron. 14, 311–315 (1982).
[CrossRef]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part II,” Opt. Quantum Electron. 14, 317–320 (1982).
[CrossRef]

Pantcheva, M.

M. Mazakova, M. Pantcheva, P. Sharlandjiev, and G. Spassov, “Electron donors and heat treatment: their effect on diffraction efficiency of DCG reflection holograms,” Appl. Opt. 24, 2156–2160 (1985).
[CrossRef] [PubMed]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part I,” Opt. Quantum Electron. 14, 311–315 (1982).
[CrossRef]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part II,” Opt. Quantum Electron. 14, 317–320 (1982).
[CrossRef]

Salminen, O.

Schulat, J.

C. G. Stojanoff, Ph. Fröning, and J. Schulat, “The use of filler material in DCG films for predictable shift of the spectral characteristics of holograms,” Proc. SPIE 3638, 61–71 (1999).
[CrossRef]

Shankoff, T. A.

Sharlandjiev, P.

P. Sharlandjiev and B. Markova, “DCG holograms as nanosized composite film elements,” Proc. SPIE 6252, 6252OQ (2006).
[CrossRef]

P. Sharlandjiev and B. Markova, “Hologram formation in dichromated gelatin: an approach based on light scattering from nanoparticles,” J. Mater. Sci. 14, 863–864 (2003).
[CrossRef]

M. Mazakova, M. Pantcheva, P. Sharlandjiev, and G. Spassov, “Electron donors and heat treatment: their effect on diffraction efficiency of DCG reflection holograms,” Appl. Opt. 24, 2156–2160 (1985).
[CrossRef] [PubMed]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part I,” Opt. Quantum Electron. 14, 311–315 (1982).
[CrossRef]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part II,” Opt. Quantum Electron. 14, 317–320 (1982).
[CrossRef]

Spassov, G.

Stojanoff, C. G.

C. G. Stojanoff, “A review of selected technical applications of DCG holography,” Proc. SPIE 7957, 7957OL (2011).
[CrossRef]

C. G. Stojanoff, Ph. Fröning, and J. Schulat, “The use of filler material in DCG films for predictable shift of the spectral characteristics of holograms,” Proc. SPIE 3638, 61–71 (1999).
[CrossRef]

Appl. Opt.

J. Mater. Sci.

P. Sharlandjiev and B. Markova, “Hologram formation in dichromated gelatin: an approach based on light scattering from nanoparticles,” J. Mater. Sci. 14, 863–864 (2003).
[CrossRef]

Opt. Eng.

B. J. Chang, “Dichromated gelatin holograms and their applications,” Opt. Eng. 19, 642–648 (1980).

Opt. Quantum Electron.

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part I,” Opt. Quantum Electron. 14, 311–315 (1982).
[CrossRef]

M. Mazakova, M. Pantcheva, P. Kandilarov, and P. Sharlandjiev, “Dichromated gelatin for volume holography with high sensitivity: part II,” Opt. Quantum Electron. 14, 317–320 (1982).
[CrossRef]

Proc. SPIE

P. Sharlandjiev and B. Markova, “DCG holograms as nanosized composite film elements,” Proc. SPIE 6252, 6252OQ (2006).
[CrossRef]

R. A. Cullen, “Some characteristics of and measurements on dichromated gelatin reflection holograms,” Proc. SPIE 369, 647–654 (1983).

C. G. Stojanoff, Ph. Fröning, and J. Schulat, “The use of filler material in DCG films for predictable shift of the spectral characteristics of holograms,” Proc. SPIE 3638, 61–71 (1999).
[CrossRef]

C. G. Stojanoff, “A review of selected technical applications of DCG holography,” Proc. SPIE 7957, 7957OL (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Method A: reflection of the DCG holographic mirror a) before and b) after swelling.

Fig. 2
Fig. 2

Method B: reflection a) before and b) after swelling. Curve c) results from a second process of the swelling of already treated DCG hologram.

Fig. 3
Fig. 3

Method C: blueshift of reflection maximum a) followed by repositioning to longer wavelengths due to swelling.

Tables (1)

Tables Icon

Table 1 Methods for Layer Swelling

Metrics