Abstract

In this paper, we propose an effective approach for reconstructing visibility-enhanced three-dimensional (3D) objects under the heavily scattering medium of dense fog in the conventional integral imaging system through the combined use of the intermediate view reconstruction (IVR), multipixel extraction (MPE), and histogram equalization (HE) methods. In the proposed system, the limited number of elemental images (EIs) picked up from the 3D objects under the dense fog is increased by as many as required by using the IVR technique. The increased number of EIs is transformed into the sub images (SIs) in which the resolution of the transformed SIs has been also improved as much as possible with the MPE method. Subsequently, by using the HE algorithm, the histogram of the resolution- enhanced SIs is uniformly redistributed over the entire range of discrete pixel levels of the image in a way that the subimage contrast can be much enhanced. Then, these equalized SIs are converted back into the newly modified EIs, and consequently a visibility-enhanced 3D object image can be reconstructed. Successful experimental results with the test object confirmed the feasibility of the proposed method.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1(1), 1–16 (2010).
    [CrossRef]
  2. J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Res. 1(1), 28–35 (2010).
    [CrossRef]
  3. Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1(1), 17–27(2010).
    [CrossRef]
  4. G. Lippmann, “La photographie integrale,” C.R. Acad. Sci. 146, 446–451 (1908).
  5. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159(2001).
    [CrossRef]
  6. S.-H. Hong, J.-S. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral image,” Opt. Express 12, 483–491 (2004).
    [CrossRef] [PubMed]
  7. P. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1(4), 1–8 (2010).
    [CrossRef]
  8. Y. Piao and E.-S. Kim, “Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging,” Appl. Opt. 48, H222–H230 (2009).
    [CrossRef] [PubMed]
  9. Y. Piao, D.-H. Shin, and E.-S. Kim, “Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system,” Jpn. J. Appl. Phys. 49, 022501 (2010).
    [CrossRef]
  10. A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
    [CrossRef]
  11. B. Lee, S.-Y. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26, 1481–1482(2001).
    [CrossRef]
  12. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  13. D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381(2006).
    [CrossRef] [PubMed]
  14. D.-H. Shin, B. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun. 275, 330–334 (2007).
    [CrossRef]
  15. S.-H. Hong and B. Javidi, “Distortion-tolerant 3D recognition of occluded objects using computational integral imaging,” Opt. Express 14, 12085–12095 (2006).
    [CrossRef] [PubMed]
  16. Y. Piao and E.-S. Kim, “Performance-enhanced recognition of a far and partially occluded 3-D object by use of direct pixel-mapping in computational curving-effective integral imaging,” Opt. Commun. 284, 747–755 (2011).
    [CrossRef]
  17. I. Moon and B. Javidi, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
    [CrossRef]
  18. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced 3D image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72–79 (2007).
    [CrossRef]
  19. K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859–2869(2008).
    [CrossRef] [PubMed]
  20. B.-G. Lee, Liliana, and D.-H. Shin, “Enhanced computational integral imaging system for partially occluded 3-D objects using occlusion removal technique and recursive PCA reconstruction,” Opt. Commun. 283, 2084–2091 (2010).
    [CrossRef]
  21. J.-J. Lee, D.-H. Shin, and B.-G. Kim, “Simple correction method of distorted elemental images using surface markers on lenslet array for computational integral imaging reconstruction,” Opt. Express 17, 18026–18037 (2009).
    [CrossRef] [PubMed]
  22. D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
    [CrossRef]
  23. M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49, 2571–2580 (2010).
    [CrossRef]
  24. B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 6–10(2010).
    [CrossRef]
  25. M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
    [CrossRef]
  26. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631–4637 (2006).
    [CrossRef] [PubMed]
  27. D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
    [CrossRef] [PubMed]
  28. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

2011 (1)

Y. Piao and E.-S. Kim, “Performance-enhanced recognition of a far and partially occluded 3-D object by use of direct pixel-mapping in computational curving-effective integral imaging,” Opt. Commun. 284, 747–755 (2011).
[CrossRef]

2010 (9)

Y. Piao, D.-H. Shin, and E.-S. Kim, “Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system,” Jpn. J. Appl. Phys. 49, 022501 (2010).
[CrossRef]

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1(1), 1–16 (2010).
[CrossRef]

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Res. 1(1), 28–35 (2010).
[CrossRef]

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1(1), 17–27(2010).
[CrossRef]

P. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1(4), 1–8 (2010).
[CrossRef]

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49, 2571–2580 (2010).
[CrossRef]

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 6–10(2010).
[CrossRef]

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[CrossRef]

B.-G. Lee, Liliana, and D.-H. Shin, “Enhanced computational integral imaging system for partially occluded 3-D objects using occlusion removal technique and recursive PCA reconstruction,” Opt. Commun. 283, 2084–2091 (2010).
[CrossRef]

2009 (2)

2008 (2)

2007 (3)

I. Moon and B. Javidi, “Three-dimensional distortion-tolerant object recognition using photon-counting integral imaging,” Opt. Express 15, 1513–1533 (2007).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced 3D image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72–79 (2007).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun. 275, 330–334 (2007).
[CrossRef]

2006 (4)

2005 (1)

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

2004 (1)

2002 (1)

2001 (2)

1908 (1)

G. Lippmann, “La photographie integrale,” C.R. Acad. Sci. 146, 446–451 (1908).

Arimoto, H.

Brooker, G.

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Res. 1(1), 28–35 (2010).
[CrossRef]

Cho, M.

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[CrossRef]

Gonzalez, R. C.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

Han, P.

P. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1(4), 1–8 (2010).
[CrossRef]

Hong, K.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1(1), 17–27(2010).
[CrossRef]

Hong, S.-H.

Hwang, D.-C.

Jang, J.-S.

Javidi, B.

Jung, S.-Y.

Kang, H.-H.

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 6–10(2010).
[CrossRef]

Katz, B.

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Res. 1(1), 28–35 (2010).
[CrossRef]

Kim, B.-G.

Kim, E.-S.

Y. Piao and E.-S. Kim, “Performance-enhanced recognition of a far and partially occluded 3-D object by use of direct pixel-mapping in computational curving-effective integral imaging,” Opt. Commun. 284, 747–755 (2011).
[CrossRef]

Y. Piao, D.-H. Shin, and E.-S. Kim, “Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system,” Jpn. J. Appl. Phys. 49, 022501 (2010).
[CrossRef]

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49, 2571–2580 (2010).
[CrossRef]

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 6–10(2010).
[CrossRef]

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1(1), 1–16 (2010).
[CrossRef]

P. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1(4), 1–8 (2010).
[CrossRef]

Y. Piao and E.-S. Kim, “Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging,” Appl. Opt. 48, H222–H230 (2009).
[CrossRef] [PubMed]

K.-J. Lee, D.-C. Hwang, S.-C. Kim, and E.-S. Kim, “Blur metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859–2869(2008).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun. 275, 330–334 (2007).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced 3D image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72–79 (2007).
[CrossRef]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631–4637 (2006).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381(2006).
[CrossRef] [PubMed]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Kim, S.-C.

Kim, Y.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1(1), 17–27(2010).
[CrossRef]

Lee, B.

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1(1), 17–27(2010).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun. 275, 330–334 (2007).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381(2006).
[CrossRef] [PubMed]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

B. Lee, S.-Y. Jung, S.-W. Min, and J.-H. Park, “Three-dimensional display by use of integral photography with dynamically variable image planes,” Opt. Lett. 26, 1481–1482(2001).
[CrossRef]

Lee, B.-G.

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 6–10(2010).
[CrossRef]

B.-G. Lee, Liliana, and D.-H. Shin, “Enhanced computational integral imaging system for partially occluded 3-D objects using occlusion removal technique and recursive PCA reconstruction,” Opt. Commun. 283, 2084–2091 (2010).
[CrossRef]

D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
[CrossRef] [PubMed]

Lee, J.-J.

Lee, K.-J.

Liliana,

B.-G. Lee, Liliana, and D.-H. Shin, “Enhanced computational integral imaging system for partially occluded 3-D objects using occlusion removal technique and recursive PCA reconstruction,” Opt. Commun. 283, 2084–2091 (2010).
[CrossRef]

Lippmann, G.

G. Lippmann, “La photographie integrale,” C.R. Acad. Sci. 146, 446–451 (1908).

Min, S.-W.

Moon, I.

Park, J.-H.

Park, J.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced 3D image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72–79 (2007).
[CrossRef]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631–4637 (2006).
[CrossRef] [PubMed]

Piao, Y.

Y. Piao and E.-S. Kim, “Performance-enhanced recognition of a far and partially occluded 3-D object by use of direct pixel-mapping in computational curving-effective integral imaging,” Opt. Commun. 284, 747–755 (2011).
[CrossRef]

Y. Piao, D.-H. Shin, and E.-S. Kim, “Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system,” Jpn. J. Appl. Phys. 49, 022501 (2010).
[CrossRef]

M. Zhang, Y. Piao, and E.-S. Kim, “Occlusion-removed scheme using depth-reversed method in computational integral imaging,” Appl. Opt. 49, 2571–2580 (2010).
[CrossRef]

P. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1(4), 1–8 (2010).
[CrossRef]

Y. Piao and E.-S. Kim, “Resolution-enhanced reconstruction of far 3-D objects by using a direct pixel mapping method in computational curving-effective integral imaging,” Appl. Opt. 48, H222–H230 (2009).
[CrossRef] [PubMed]

Rosen, J.

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Res. 1(1), 28–35 (2010).
[CrossRef]

Shin, D.-H.

Y. Piao, D.-H. Shin, and E.-S. Kim, “Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system,” Jpn. J. Appl. Phys. 49, 022501 (2010).
[CrossRef]

B.-G. Lee, Liliana, and D.-H. Shin, “Enhanced computational integral imaging system for partially occluded 3-D objects using occlusion removal technique and recursive PCA reconstruction,” Opt. Commun. 283, 2084–2091 (2010).
[CrossRef]

J.-J. Lee, D.-H. Shin, and B.-G. Kim, “Simple correction method of distorted elemental images using surface markers on lenslet array for computational integral imaging reconstruction,” Opt. Express 17, 18026–18037 (2009).
[CrossRef] [PubMed]

D.-H. Shin, B.-G. Lee, and J.-J. Lee, “Occlusion removal method of partially occluded 3D object using sub-image block matching in computational integral imaging,” Opt. Express 16, 16294–16304 (2008).
[CrossRef] [PubMed]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced 3D image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72–79 (2007).
[CrossRef]

D.-H. Shin, B. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun. 275, 330–334 (2007).
[CrossRef]

D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631–4637 (2006).
[CrossRef] [PubMed]

D.-H. Shin, B. Lee, and E.-S. Kim, “Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens,” Appl. Opt. 45, 7375–7381(2006).
[CrossRef] [PubMed]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Stern, A.

A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Woods, R. E.

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

Zhang, M.

3D Res. (5)

S.-C. Kim and E.-S. Kim, “Performance analysis of stereoscopic three-dimensional projection display systems,” 3D Res. 1(1), 1–16 (2010).
[CrossRef]

J. Rosen, B. Katz, and G. Brooker, “Review of three-dimensional holographic imaging by Fresnel incoherent correlation holograms,” 3D Res. 1(1), 28–35 (2010).
[CrossRef]

Y. Kim, K. Hong, and B. Lee, “Recent researches based on integral imaging display method,” 3D Res. 1(1), 17–27(2010).
[CrossRef]

P. Han, Y. Piao, and E.-S. Kim, “Accelerated reconstruction of 3-D object images using estimated object area in backward computational integral imaging reconstruction,” 3D Res. 1(4), 1–8 (2010).
[CrossRef]

B.-G. Lee, H.-H. Kang, and E.-S. Kim, “Occlusion removal method of partially occluded object using variance in computational integral imaging,” 3D Res. 1(2), 6–10(2010).
[CrossRef]

Appl. Opt. (5)

C.R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C.R. Acad. Sci. 146, 446–451 (1908).

J. Disp. Technol. (1)

M. Cho and B. Javidi, “Three-dimensional visualization of objects in turbid water using integral imaging,” J. Disp. Technol. 6, 544–547 (2010).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Piao, D.-H. Shin, and E.-S. Kim, “Computational depth conversion of reconstructed three-dimensional object images in curving-effective integral imaging system,” Jpn. J. Appl. Phys. 49, 022501 (2010).
[CrossRef]

D.-H. Shin, E.-S. Kim, and B. Lee, “Computational reconstruction technique of three-dimensional object in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Opt. Commun. (4)

D.-H. Shin, B. Lee, and E.-S. Kim, “Optical display of true 3D objects in depth-priority integral imaging using an active sensor,” Opt. Commun. 275, 330–334 (2007).
[CrossRef]

Y. Piao and E.-S. Kim, “Performance-enhanced recognition of a far and partially occluded 3-D object by use of direct pixel-mapping in computational curving-effective integral imaging,” Opt. Commun. 284, 747–755 (2011).
[CrossRef]

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Resolution-enhanced 3D image correlator using computationally reconstructed integral images,” Opt. Commun. 276, 72–79 (2007).
[CrossRef]

B.-G. Lee, Liliana, and D.-H. Shin, “Enhanced computational integral imaging system for partially occluded 3-D objects using occlusion removal technique and recursive PCA reconstruction,” Opt. Commun. 283, 2084–2091 (2010).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Proc. IEEE (1)

A. Stern and B. Javidi, “Three dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591–607 (2006).
[CrossRef]

Other (1)

R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

CII system: (a) Pickup process, (b) OIIR process, (c) CIIR process.

Fig. 2
Fig. 2

Framework of the proposed system.

Fig. 3
Fig. 3

Schematic diagram for picking up the EIA of the object.

Fig. 4
Fig. 4

Operational principle of the IVR technique.

Fig. 5
Fig. 5

EST based on MPE: (a) Picked-up EIA, (b) transformed SIA.

Fig. 6
Fig. 6

Analysis of the EST operation based on MPE.

Fig. 7
Fig. 7

Transformed SIAs based on (a) single-pixel extraction, (b) three-pixel extraction, and (c) five (maximum) pixel extraction.

Fig. 8
Fig. 8

High-resolution subimage based on maximum-pixel extraction and its histogram: (a) subimage under dense fog, (b) histogram of subimage under dense fog, (c) subimage without dense fog, (d) histogram of subimage without dense fog.

Fig. 9
Fig. 9

Low-resolution subimages based on single-pixel extraction and its histograms: (a) low-resolution subimage and its histogram, (b) distorted subimage and its histogram with the HE operation.

Fig. 10
Fig. 10

Test objects and experimental setup for pickup of the test objects under dense fog.

Fig. 11
Fig. 11

EIA picked up from the test objects through the pinhole array of 30 pinholes × 30 pinholes (a) under dense fog (99% opacity) and (b) without fog.

Fig. 12
Fig. 12

(a) Originally picked-up EIA. (b) Resolution-enhanced EIA by IVR.

Fig. 13
Fig. 13

SIAs transformed from the resolution-enhanced EIA of Fig. 12b based on (a) single-pixel extraction and (b) five (maximum) pixel extraction.

Fig. 14
Fig. 14

Visibility-enhanced SIAs after performing the HE operation for (a) Case-2 and (b) Case-3.

Fig. 15
Fig. 15

Visibility-enhanced EIAs: (a) Case-1, (b) Case-2, (c) Case-3.

Fig. 16
Fig. 16

Reconstructed object images in the (a) classical approach, (b) Case-1, (c) Case-2, (d) Case-3.

Fig. 17
Fig. 17

Close-up portions of the reconstructed truck images from Figs. 16a, 16b, 16c, 16d.

Fig. 18
Fig. 18

Comparison of PSNRs of the object image of the truck under the influence of fog opacity from 0 to 99%.

Tables (2)

Tables Icon

Table 1 Comparison of PSNR Values Under the Case of Fog Opacity 99%

Tables Icon

Table 2 Comparison of NCC Values for the Truck When the Fog Opacity is Set to be 90% and 99%

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E p ( j ) = ( 1 δ ) · E i [ j + δ P ( j ) ] + δ · E i + 1 [ j ( 1 δ ) P ( j ) ] .
S ( i , j ) = E ( t x e x + q x m + r x , t y e y + q y m + r y ) ,
m max = ( m max , x = g z e x = e x M , m max , y = g z e y = e y M ) ,
s k = T ( r k ) = j = 0 k p r ( r j ) = j = 0 k n j n , 0 r k 1 , k = 0 , 1 , , 255 ,
r k = N s k , k = 1 , 2 , , N 1 ,
Δ ( i 1 , i 2 ) = r i 2 r i 1 .
Δ ( i 1 , i 2 ) = r i 2 r i 1 = N ( s i 2 s i 1 ) = N ( j = 0 i 2 n j n j = 0 i 1 n j n ) = N j = i 1 + 1 i 2 n j n = N j = i + 1 i 2 p r ( r j ) .
PSNR = 10 log 10 255 2 MSE ( O , R ) ,
MSE = 1 M N x = 1 M y = 1 N [ R ( x , y ) O ( x , y ) ] 2 ,
NCC ( O , R ) = | R E ( R ) | | O O ( R ) | ( R E ( R ) ) 2 ( O O ( R ) ) 2 .

Metrics