Abstract

The influence of beam-pointing on scanning confocal microscopy is investigated. The beam displacement is measured using a quadrant photodiode, and the apparent movement of a sub-micron-sized particle observed by second-harmonic microscopy is linked to the beam displacement. A simple beam-pointing stabilization is implemented, and improvement of beam stability by three orders of magnitude on long time scales is achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin 2006).
    [CrossRef]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782(1994).
    [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
    [CrossRef] [PubMed]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
    [CrossRef] [PubMed]
  5. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).
  6. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
    [CrossRef]
  7. X. Nan, J. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208(2003).
    [CrossRef] [PubMed]
  8. M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
    [CrossRef]
  9. D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).
  10. M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
    [CrossRef]
  11. T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095 (1997).
    [CrossRef]
  12. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt. 46, 421–427 (2007).
    [CrossRef] [PubMed]
  13. P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
    [CrossRef]
  14. A. A. Tovar and L. W. Casperson, “Generalized beam matrices: Gaussian beam propagation in misaligned complex optical systems,” J. Opt. Soc. Am. A 12, 1522–1533 (1995).
    [CrossRef]
  15. LabVIEW PID and Fuzzy Logic Toolkit User Manual, National Instruments, June 2009: www.ni.com/pdf/manuals/372192d.pdf (accessed 2 August 2010).
  16. A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
    [CrossRef]

2010 (1)

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
[CrossRef]

2009 (2)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
[CrossRef]

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

2008 (1)

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).

2007 (1)

2006 (3)

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[CrossRef] [PubMed]

2003 (1)

X. Nan, J. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208(2003).
[CrossRef] [PubMed]

1999 (1)

D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).

1997 (1)

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095 (1997).
[CrossRef]

1995 (1)

1994 (1)

1966 (1)

A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Alchenberger, D.

Allan, A. W.

A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[CrossRef] [PubMed]

Beer, S.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
[CrossRef]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Brandenburg, B.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).

Carter, A. R.

Casperson, L. W.

Cheng, J.

X. Nan, J. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208(2003).
[CrossRef] [PubMed]

Cleff, C.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
[CrossRef]

Daido, H.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
[CrossRef]

Fallnich, C.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
[CrossRef]

Fukumi, A.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Groß, P.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
[CrossRef]

Halsey, W.

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
[CrossRef]

Harlow, M. L.

D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).

Hartsuiker, L.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Hayashi, Y.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782(1994).
[CrossRef] [PubMed]

Herek, J. L.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Huang, B.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
[CrossRef]

Jones, S. A.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).

Jurna, M.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Kado, M.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

King, G. M.

Kleinebudde, P.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Kleinschmidt, L.

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
[CrossRef]

Li, Z.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Marshall, R. M.

D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).

McMahan, U. L.

D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).

Mori, M.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Nan, X.

X. Nan, J. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208(2003).
[CrossRef] [PubMed]

Nishiuchi, M.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

O’Hara, K. M.

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095 (1997).
[CrossRef]

Offerhaus, H. L.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Ogura, K.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Orimo, S.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Otto, C.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin 2006).
[CrossRef]

Perkins, T. T.

Pirozhkov, A.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Ress, D.

D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[CrossRef] [PubMed]

Sagisaka, A.

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Savard, T. A.

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095 (1997).
[CrossRef]

Schwarz, M.

D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Strachan, C. J.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Thomas, J. E.

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095 (1997).
[CrossRef]

Tovar, A. A.

Ulrich, T. A.

Wichmann, J.

Windbergs, M.

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

Xie, X. S.

X. Nan, J. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208(2003).
[CrossRef] [PubMed]

Zhuang, X.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

P. Groß, L. Kleinschmidt, S. Beer, C. Cleff, and C. Fallnich, “Single-laser light source for CARS microscopy based on soliton self-frequency shift in a microsctructured fiber,” Appl. Phys. B 101, 167–172 (2010).
[CrossRef]

J. Electron Microsc. (1)

D. Ress, M. L. Harlow, M. Schwarz, R. M. Marshall, and U. L. McMahan, “Automatic acquisition of fiducial markers and alignment of images in tilt series for electron tomography,” J. Electron Microsc. 48, 277–287 (1999).

J. Innov. Opt. Health Sci. (1)

M. Jurna, M. Windbergs, C. J. Strachan, L. Hartsuiker, C. Otto, P. Kleinebudde, J. L. Herek, and H. L. Offerhaus, “Coherent anti-Stokes Raman scattering microscopy to monitor drug dissolution in different oral pharmaceutical tablets,” J. Innov. Opt. Health Sci. 2, 37–43 (2009).
[CrossRef]

J. Lipid Res. (1)

X. Nan, J. Cheng, and X. S. Xie, “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208(2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Laser Phys. (1)

M. Mori, A. Pirozhkov, M. Nishiuchi, K. Ogura, A. Sagisaka, Y. Hayashi, S. Orimo, A. Fukumi, Z. Li, M. Kado, and H. Daido, “Development of beam-pointing stabilizer on a 10 TWTi:Al2O3 laser system JLITE-X for laser-excited ion accelerator research,” Laser Phys. 16, 1092–1096(2006).
[CrossRef]

Nat. Methods (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–795 (2006).
[CrossRef] [PubMed]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 23, 1–6 (2008).

Nat. Photon. (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal color centres with nanometric resolution,” Nat. Photon. 3, 144–147 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

T. A. Savard, K. M. O’Hara, and J. E. Thomas, “Laser-noise-induced heating in far-off resonance optical traps,” Phys. Rev. A 56, R1095 (1997).
[CrossRef]

Proc. IEEE (1)

A. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966).
[CrossRef]

Science (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Science 313, 1642–1645 (2006).
[CrossRef] [PubMed]

Other (2)

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, Berlin 2006).
[CrossRef]

LabVIEW PID and Fuzzy Logic Toolkit User Manual, National Instruments, June 2009: www.ni.com/pdf/manuals/372192d.pdf (accessed 2 August 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Setup of the confocal scanning microscope with beam-pointing stabilization. Iso, Faraday isolator; PCM, piezo-controlled mirror; BS, beam splitter; ND, variable neutral density gray filter; MO, microscope objective; PMT, photo- multiplier tube; L1, L2, lenses with 75 and 25 mm focal length; Q4PD, quadrant photodiode; DAC, digital/analog converter.

Fig. 2
Fig. 2

Quadrant photodiode. (a) Sketch of the geometry with numbering of the four elements, (b) difference signal of the fourth and the first element, and (c) sum signal of the second and the third element, both when the laser spot was moved along the x-axis. Symbols, measured values; solid line, calculation. At the outer boundaries of the graphs, the decreasing total power on the photodiode leads to increasing error (open circles, values not used for the fitting procedure), yielding a practical limit of error of about ± 3 mm .

Fig. 3
Fig. 3

Second-harmonic microscopic image of an elliptically shaped ZnO particle. Intersection of white broken lines indicates the center of mass.

Fig. 4
Fig. 4

Parallel measurements as a function of time over a time interval of 60 hours: (a) environmental temperature in the laboratory, (b) beam position on the Q4PD (blue curve, darker curve in print) and particle displacement in the microscopic image (red curve, lighter in print) along the x-axis, (c) beam position and particle displacement along the y-axis.

Fig. 5
Fig. 5

Beam position on the Q4PD over a time span of 90 s , (a) projection on the x-axis and (b) on the y-axis. Black curves (darker in print), free-running; red curves (lighter in print), stabilized.

Fig. 6
Fig. 6

Beam position on the Q4PD over a time span of 180 min , (a) projection onto the x-axis and (b) onto the y-axis. Black curve: free-running, red curve: stabilized.

Fig. 7
Fig. 7

Beam position on the Q4PD over a time span of 53 h , (a) projection onto the x-axis and (b) onto the y-axis. Black curves (darker in print), free-running; red curves (lighter in print), stabilized.

Fig. 8
Fig. 8

Allan deviation of the beam position on the Q4PD. The upper traces are the deviation in the case without stabilization (projection onto the x-axis, black, top, andonto the y axis, gray curve overlapping black curve) and the lower traces in the case that the beam-pointing was stabilized (projection onto the x-axis, red, second from bottom), and onto the y axis, orange, bottom).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Q x = Q 4 Q 1 Q 4 + Q 1 ,
Q y = Q 3 Q 2 Q 3 + Q 2 .
Q x , p = Q 2 + Q 3 k = 1 4 Q k ,
Q y , p = Q 1 + Q 4 k = 1 4 Q k ,
σ x 2 ( τ ) = 1 N 1 n = 0 N 1 ( x ¯ n + 1 x ¯ n ) 2 2 .

Metrics