Abstract

This paper analyzes the performance of a fiber Bragg grating (FBG) filter-based strain and/or temperature sensing system based on a modified Gaussian function (MGF) approximation method. Instead of using a conventional Gaussian function, we propose the MGF, which can capture the characteristics of the sidelobes of the reflected spectrum, to model the FBG sensor and filter. We experimentally demonstrate that, by considering the contributions of the sidelobes with the MGF approximation method, behaviors of the FBG filter-based FBG displacement and/or temperature sensing system can be predicted more accurately. The predicted behaviors include the saturation, the sensitivity, the sensing range, and the optimal initial Bragg wavelengths of the FBG sensing system.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  2. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  3. T. Guo, X. G. Qiao, ZA Jia, Q. D. Zhao, and X. Y. Dong, “Simultaneous measurement of temperature and pressure by a single fiber Bragg grating with a broadened reflection spectrum,” Appl. Opt. 45, 2935–2939 (2006).
    [CrossRef] [PubMed]
  4. K. O. Hill and G. Meltz, “Fiber Bragg grating technology: fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  5. Y. J. Rao, Z. L. Ran, and C. X. Zhou, “Fiber-optic Fabry-Perot sensors based on a combination of spatial-frequency division multiplexing and wavelength division multiplexing formed by chirped fiber Bragg grating pairs,” Appl. Opt. 45, 5815–5818 (2006).
    [CrossRef] [PubMed]
  6. S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998).
    [CrossRef]
  7. Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
    [CrossRef]
  8. Q. Wu, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Study of the effect of source signal bandwidth on ratiometric wavelength measurement,” Appl. Opt. 49, 5626–5631(2010).
    [CrossRef] [PubMed]
  9. K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561–3567 (2008).
    [CrossRef] [PubMed]
  10. C. C. Ma and K. C. Chuang, “Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system,” Smart Mater. Struct. 17, 065010(2008).
    [CrossRef]
  11. R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
    [CrossRef]
  12. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
    [CrossRef]
  13. V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648–650 (1997).
    [CrossRef] [PubMed]
  14. J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
    [CrossRef]
  15. I. C. Song, S. K. Lee, S. H. Jeong, and B. H. Lee, “Absolute strain measurements made with fiber Bragg grating sensors,” Appl. Opt. 43, 1337–1341 (2004).
    [CrossRef] [PubMed]
  16. S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
    [CrossRef]
  17. S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001).
    [CrossRef]
  18. K. C. Chuang and C. C. Ma, “Tracking control of a multilayer piezoelectric actuator using a fiber Bragg grating displacement sensor system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2036–2049 (2009).
    [CrossRef] [PubMed]
  19. K. C. Chuang and C. C. Ma, “Multidimensional dynamic displacement and strain measurement using an intensity demodulation-based fiber Bragg grating sensing system,” J. Lightwave Technol. 28, 1897–1905 (2010).
    [CrossRef]
  20. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  21. A. S. Paterno, V. Oliveira, T. S. Figueredo, and H. J. Kalinowski, “Multiplexed fiber Bragg grating interrogation system using a modulated fiber Bragg grating and the tunable filter method,” IEEE Sens. J. 6, 1662–1668(2006).
    [CrossRef]
  22. J. Mora, J. L. Cruz, M. V. Andrés, and R. Duchowicz, “Simple high resolution wavelength monitor based on a fiber Bragg grating,” Appl. Opt. 43, 744–749 (2004).
    [CrossRef] [PubMed]
  23. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
    [CrossRef]
  24. W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000).
    [CrossRef]
  25. M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
    [CrossRef]

2010 (3)

2009 (1)

K. C. Chuang and C. C. Ma, “Tracking control of a multilayer piezoelectric actuator using a fiber Bragg grating displacement sensor system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2036–2049 (2009).
[CrossRef] [PubMed]

2008 (2)

K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561–3567 (2008).
[CrossRef] [PubMed]

C. C. Ma and K. C. Chuang, “Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system,” Smart Mater. Struct. 17, 065010(2008).
[CrossRef]

2006 (3)

2004 (2)

2003 (1)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
[CrossRef]

2002 (1)

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

2001 (1)

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001).
[CrossRef]

2000 (1)

W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000).
[CrossRef]

1998 (3)

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

1997 (5)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology: fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648–650 (1997).
[CrossRef] [PubMed]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1996 (2)

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
[CrossRef]

Andrés, M. V.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Bennion, I.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Betz, D. C.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
[CrossRef]

Bhatia, V.

Campbell, D.

Chan, C. C.

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Chan, P. K. C.

W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000).
[CrossRef]

Choi, S. S.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

Chuang, K. C.

K. C. Chuang and C. C. Ma, “Multidimensional dynamic displacement and strain measurement using an intensity demodulation-based fiber Bragg grating sensing system,” J. Lightwave Technol. 28, 1897–1905 (2010).
[CrossRef]

K. C. Chuang and C. C. Ma, “Tracking control of a multilayer piezoelectric actuator using a fiber Bragg grating displacement sensor system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2036–2049 (2009).
[CrossRef] [PubMed]

C. C. Ma and K. C. Chuang, “Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system,” Smart Mater. Struct. 17, 065010(2008).
[CrossRef]

K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561–3567 (2008).
[CrossRef] [PubMed]

Claus, R. O.

Cruz, J. L.

Culshaw, B.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
[CrossRef]

Dakin, J. P.

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Dong, X. Y.

Duchowicz, R.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Everall, L. A.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Fallon, R. W.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Farrell, G.

Q. Wu, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Study of the effect of source signal bandwidth on ratiometric wavelength measurement,” Appl. Opt. 49, 5626–5631(2010).
[CrossRef] [PubMed]

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Figueredo, T. S.

A. S. Paterno, V. Oliveira, T. S. Figueredo, and H. J. Kalinowski, “Multiplexed fiber Bragg grating interrogation system using a modulated fiber Bragg grating and the tunable filter method,” IEEE Sens. J. 6, 1662–1668(2006).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Geiger, H.

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Gong, J. M.

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Guo, T.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology: fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Huang, S.

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Jeong, S. H.

Jia, ZA

Jin, W.

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000).
[CrossRef]

Kalinowski, H. J.

A. S. Paterno, V. Oliveira, T. S. Figueredo, and H. J. Kalinowski, “Multiplexed fiber Bragg grating interrogation system using a modulated fiber Bragg grating and the tunable filter method,” IEEE Sens. J. 6, 1662–1668(2006).
[CrossRef]

Kang, S. C.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
[CrossRef]

Kim, S.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001).
[CrossRef]

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001).
[CrossRef]

Kim, S. Y.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kwon, J.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001).
[CrossRef]

Kwon, S. W.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

LeBlanc, M.

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, B.

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001).
[CrossRef]

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

Lee, B. H.

Lee, S. B.

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

Lee, S. K.

Liao, Y. B.

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Ma, C. C.

K. C. Chuang and C. C. Ma, “Multidimensional dynamic displacement and strain measurement using an intensity demodulation-based fiber Bragg grating sensing system,” J. Lightwave Technol. 28, 1897–1905 (2010).
[CrossRef]

K. C. Chuang and C. C. Ma, “Tracking control of a multilayer piezoelectric actuator using a fiber Bragg grating displacement sensor system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2036–2049 (2009).
[CrossRef] [PubMed]

K. C. Chuang and C. C. Ma, “Pointwise fiber Bragg grating displacement sensor system for dynamic measurements,” Appl. Opt. 47, 3561–3567 (2008).
[CrossRef] [PubMed]

C. C. Ma and K. C. Chuang, “Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system,” Smart Mater. Struct. 17, 065010(2008).
[CrossRef]

MacAlphine, J. M. K.

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Measures, R. M.

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology: fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Mora, J.

Ohn, M. M.

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Oliveira, V.

A. S. Paterno, V. Oliveira, T. S. Figueredo, and H. J. Kalinowski, “Multiplexed fiber Bragg grating interrogation system using a modulated fiber Bragg grating and the tunable filter method,” IEEE Sens. J. 6, 1662–1668(2006).
[CrossRef]

Paterno, A. S.

A. S. Paterno, V. Oliveira, T. S. Figueredo, and H. J. Kalinowski, “Multiplexed fiber Bragg grating interrogation system using a modulated fiber Bragg grating and the tunable filter method,” IEEE Sens. J. 6, 1662–1668(2006).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
[CrossRef]

Pedrazzani, J. R.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Qiao, X. G.

Rajan, G.

Ran, Z. L.

Rao, Y. J.

Semenova, Y.

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Q. Wu, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Study of the effect of source signal bandwidth on ratiometric wavelength measurement,” Appl. Opt. 49, 5626–5631(2010).
[CrossRef] [PubMed]

Song, I. C.

Staszewski, W. J.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
[CrossRef]

Thursby, G.

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
[CrossRef]

Vengsarkar, A. M.

V. Bhatia, D. Campbell, R. O. Claus, and A. M. Vengsarkar, “Simultaneous strain and temperature measurement with long-period gratings,” Opt. Lett. 22, 648–650 (1997).
[CrossRef] [PubMed]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
[CrossRef]

Wang, P.

Q. Wu, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Study of the effect of source signal bandwidth on ratiometric wavelength measurement,” Appl. Opt. 49, 5626–5631(2010).
[CrossRef] [PubMed]

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Williams, G. M.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
[CrossRef]

Williams, J. A. R.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Wu, Q.

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

Q. Wu, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Study of the effect of source signal bandwidth on ratiometric wavelength measurement,” Appl. Opt. 49, 5626–5631(2010).
[CrossRef] [PubMed]

Xu, H. G.

W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000).
[CrossRef]

Xu, M. G.

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Zhang, L.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Zhang, M.

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

Zhao, Q. D.

Zhou, C. X.

Zhou, Y.

W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000).
[CrossRef]

Appl. Opt. (6)

IEEE Photon. Technol. Lett. (4)

J. M. Gong, J. M. K. MacAlphine, C. C. Chan, W. Jin, M. Zhang, and Y. B. Liao, “A novel wavelength detection technique for fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 14, 678–680 (2002).
[CrossRef]

S. C. Kang, S. Y. Kim, S. B. Lee, S. W. Kwon, S. S. Choi, and B. Lee, “Temperature-independent strain sensor system using a tilted fiber Bragg grating demodulator,” IEEE Photon. Technol. Lett. 10, 1461–1463 (1998).
[CrossRef]

S. Kim, S. Kim, J. Kwon, and B. Lee, “Fiber Bragg grating strain sensor demodulator using a chirped fiber grating,” IEEE Photon. Technol. Lett. 13, 839–841 (2001).
[CrossRef]

H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, “Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,” IEEE Photon. Technol. Lett. 8, 1223–1225(1996).
[CrossRef]

IEEE Sens. J. (1)

A. S. Paterno, V. Oliveira, T. S. Figueredo, and H. J. Kalinowski, “Multiplexed fiber Bragg grating interrogation system using a modulated fiber Bragg grating and the tunable filter method,” IEEE Sens. J. 6, 1662–1668(2006).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

K. C. Chuang and C. C. Ma, “Tracking control of a multilayer piezoelectric actuator using a fiber Bragg grating displacement sensor system,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2036–2049 (2009).
[CrossRef] [PubMed]

J. Lightwave Technol. (5)

K. C. Chuang and C. C. Ma, “Multidimensional dynamic displacement and strain measurement using an intensity demodulation-based fiber Bragg grating sensing system,” J. Lightwave Technol. 28, 1897–1905 (2010).
[CrossRef]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology: fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

M. G. Xu, H. Geiger, and J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Meas. Sci. Technol. (3)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Q. Wu, P. Wang, Y. Semenova, and G. Farrell, “A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system,” Meas. Sci. Technol. 21, 094013 (2010).
[CrossRef]

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, “All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating,” Meas. Sci. Technol. 9, 1969–1973 (1998).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators (1)

W. Jin, Y. Zhou, P. K. C. Chan, and H. G. Xu, “A fibre-optic grating sensor for the study of flow-induced vibrations,” Sens. Actuators 79, 36–45 (2000).
[CrossRef]

Smart Mater. Struct. (3)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Acousto-ultrasonic sensing using fiber Bragg gratings,” Smart Mater. Struct. 12, 122–128 (2003).
[CrossRef]

C. C. Ma and K. C. Chuang, “Investigation of the transient behavior of a cantilever using a point-wise fiber Bragg grating displacement sensor system,” Smart Mater. Struct. 17, 065010(2008).
[CrossRef]

S. Huang, M. M. Ohn, M. LeBlanc, and R. M. Measures, “Continuous arbitrary strain profile measurements with fiber Bragg grating,” Smart Mater. Struct. 7, 248–256 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Illustration of the FBG-based demodulation and sensing system.

Fig. 2
Fig. 2

Reflected spectra of the FBG sensor.

Fig. 3
Fig. 3

Transmittance spectra of the FBG filter.

Fig. 4
Fig. 4

Experimental setup for the temperature sensing.

Fig. 5
Fig. 5

Relationship between temperature variations to the shifts of the wavelength and the output voltages of the FBG sensing system.

Fig. 6
Fig. 6

Relationship between temperature variations to the responses of the FBG sensing system.

Fig. 7
Fig. 7

Reflected spectra of the FBG sensor for the strain sensing.

Fig. 8
Fig. 8

Transmittance spectra of the FBG filter for the strain sensing.

Fig. 9
Fig. 9

Transmittance spectra of the OTF-300 filter for the strain sensing.

Fig. 10
Fig. 10

Experimental setup for the strain sensing.

Fig. 11
Fig. 11

Shifts of the reflected spectrum of the FBG sensor under applied strain.

Fig. 12
Fig. 12

Linearity between the displacements to the shifts of the Bragg wavelength.

Fig. 13
Fig. 13

Responses of the FBG sensing system under ± 5 V triangular wave input of 0.1 Hz .

Fig. 14
Fig. 14

Responses of the FBG sensing system under ± 1 V saw tooth wave input of 0.1 Hz .

Fig. 15
Fig. 15

Relation of the applied strain to the output intensity of the FBG filter-based FBG sensing system.

Fig. 16
Fig. 16

Relation of the applied strain to the output intensity of the OTF-300 filter-based FBG sensing system.

Fig. 17
Fig. 17

Influences of the initial Bragg wavelengths to the responses of the FBG.

Fig. 18
Fig. 18

(a) Dependence of the normalized gain on the normalized wavelength mismatch. (b) Relationship between input voltages to the output voltages of the FBG sensing system.

Tables (1)

Tables Icon

Table 1 Linearity of the Translation Stage

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

R S ( λ ) = { R S exp [ 4 ln 2 ( λ λ S σ S ) 2 ] | λ λ S | Ω N S | λ λ S | > Ω ,
N S = R S exp [ 4 ln 2 ( Ω σ S ) 2 ] .
T F ( λ ) = I in ( λ ) R F exp [ 4 ln 2 ( λ λ F σ F ) 2 ] ,
I = R S ( λ ) T F ( λ ) d λ = λ S Ω λ S + Ω R S ( λ ) T F ( λ ) d λ + N S [ λ S Ω T F ( λ ) d λ + λ S + Ω T F ( λ ) d λ ] ,
I = { R S exp [ 4 ln 2 ( λ λ S σ S ) 2 ] } { T max R F exp [ 4 ln 2 ( λ λ F σ F ) 2 ] } d λ = { R S T max exp [ 4 ln 2 ( λ λ S σ S ) 2 ] R S R F exp [ 4 ln 2 ( λ λ S σ S ) 2 4 ln 2 ( λ λ F σ F ) 2 ] } d λ = I max I P exp ( δ λ nor 2 ) ,
I max = π T max R S σ S 4 ln 2 .
I P = π R F R S 4 ln 2 σ F σ S σ F 2 + σ S 2 ,
δ λ nor = 4 ln 2 σ F 2 + σ S 2 ( λ S λ F ) = 4 ln 2 σ F 2 + σ S 2 δ λ ,
λ S = λ S 0 + Δ λ S ,
Δ λ S λ S 0 = K ε Δ ε + K T Δ T ,
δ λ nor = 4 ln 2 σ F 2 + σ S 2 ( λ S 0 λ F + λ S 0 K T Δ T ) ,
δ λ nor = 4 ln 2 σ F 2 + σ S 2 ( λ S 0 λ F + λ S 0 K ε Δ ε ) .
Δ ε = ε 0 + ε m f ( t ) ,
Δ λ S = λ S 0 K ε Δ ε = λ S 0 K ε ( ε 0 + ε m f ( t ) ) = Δ λ S 0 + λ m f ( t ) ,
δ λ = λ S 0 λ F + Δ λ S = λ S 0 λ F + Δ λ S 0 + λ m f ( t ) = δ λ DC + δ λ AC ,
I AC K λ m f ( t ) ,
K = d I d ( δ λ ) | δ λ = δ λ DC = d I d ( δ λ nor ) d ( δ λ nor ) d ( δ λ ) | δ λ = δ λ DC .
K = d d ( δ λ nor ) [ I max I P exp ( δ λ nor 2 ) ] × d d ( δ λ ) ( 4 ln 2 σ F 2 + σ S 2 δ λ ) | δ λ = δ λ DC = 2 I P 4 ln 2 σ F 2 + σ S 2 δ λ nor exp ( δ λ nor 2 ) | δ λ = δ λ DC .
K nor = 1 2 I P σ F 2 + σ S 2 4 ln 2 K = δ λ nor exp ( δ λ nor 2 ) .
d ( K nor ) d ( δ λ nor ) = exp ( δ λ nor 2 ) 2 exp ( δ λ nor 2 ) δ λ nor 2 = 0 .
δ λ nor = 1 2 .
δ λ OPT = λ S 0 λ F + Δ λ S , OPT = σ F 2 + σ S 2 8 ln 2 ,
K max = 2 I P 4 ln 2 σ F 2 + σ S 2 K nor .
R S ( λ ) = R S C exp [ 4 ln 2 ( λ λ S σ S ) 2 ] + R S L exp [ 4 ln 2 ( λ λ S L σ S L ) 2 ] + R S R exp [ 4 ln 2 ( λ λ S R σ S R ) 2 ] ,
T F ( λ ) = T max { R F C exp [ 4 ln 2 ( λ λ F σ F ) 2 ] + R F L exp [ 4 ln 2 ( λ λ F L σ F L ) 2 ] + R F R exp [ 4 ln 2 ( λ λ F R σ F R ) 2 ] } .
I = R ( λ ) S T F ( λ ) d λ = { R S exp [ 4 ln 2 ( λ λ S σ S ) 2 ] + R S L exp [ 4 ln 2 ( λ λ S L σ S L ) 2 ] + R S R exp [ 4 ln 2 ( λ λ S R σ S R ) 2 ] } { T max R F exp [ 4 ln 2 ( λ λ F σ F ) 2 ] R F L exp [ 4 ln 2 ( λ λ F L σ F L ) 2 ] R F R exp [ 4 ln 2 ( λ λ F R σ F R ) 2 ] } d λ .
I = I max [ I S F exp [ δ S F 2 ] + I S F L exp [ δ S F L 2 ] + I S F R exp [ δ S F R 2 ] I S L F exp [ δ S L F 2 ] + I S L F L exp [ δ S L F L 2 ] + I S L F R exp [ δ S L F R 2 ] I S R F exp [ δ S R F 2 ] + I S R F L exp [ δ S R F L 2 ] + I S R F R exp [ δ S R F R 2 ] ] ,
I max = π T max R S σ S 4 ln 2 + π T max R S L σ S L 4 ln 2 + π T max R S R σ S R 4 ln 2 ,
ε = u x ,
Δ ε = Δ L L 0 ,
λ S = 0.0217 Δ L + 1560.4 .
λ S 1560.4 Δ L = 0.0217 = Δ λ S Δ L .
K ε = Δ λ S Δ L L 0 λ S 0 = 0.695 / με .
δ λ OPT = σ F 2 + σ S 2 8 ln 2 = 0.191 2 + 0.194 2 8 ln 2 = 0.1156 nm .
δ λ = λ S 0 λ F + Δ λ S = 1560.463 nm 1560.367 nm + 0.01325 nm = 0.1093 nm .

Metrics