Abstract

The aim of the present study was to propose a model and a method to derive the oxyhemoglobin blood content in the retinal veins and arteries by full spectrum reflectometry measurements in the spectral zone from 430 to 680nm. We proposed a mathematical equation expressed as a linear combination of two terms SOHb(λ) and SHb(λ) representing the normalized spectral absorption functions of the hemoglobin and the oxyhemoglobin, one term λn representing the ocular media absorption with scattering, and a family of multi-Gaussian functions, which usefully compensate for the noncompatibility of the model and the experimental data in the red spectral zone. The present paper suggests that the spectral reflection function in the area from 520 to 580nm is optimal in calculating the oxyhemoglobin concentration of the blood contained in the endothelial structures of retinal vessels. The model calculation needs a function (1/λ)n that corrects for the ocular media absorption and light scattering on the vessels’ structures. For the spectral area of lights with wavelength larger than 580nm, the reflected light represents mainly the light scattering on the red blood cells.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Riva and G. T. Feke, “Laser Doppler velocimetry in the measurement of retinal blood flow,” in The Biomedical Laser: Technology and Clinical Applications, L.Golman, ed. (Springer, 1981), pp. 135–161.11.
  2. G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retina vessels,” J. Opt. Soc. Am. 68, 526–531 (1978).
    [CrossRef] [PubMed]
  3. A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003).
    [PubMed]
  4. R. N. Pittman and B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
    [PubMed]
  5. J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999).
    [CrossRef]
  6. J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
    [PubMed]
  7. H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
    [CrossRef]
  8. F. C. Delori, “Noninvasive technique for oxymetry of blood in retinal vessels,” Appl. Opt. 27, 1113–1125 (1988).
    [CrossRef] [PubMed]
  9. D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001).
    [CrossRef]
  10. D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
    [CrossRef] [PubMed]
  11. D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
    [CrossRef]
  12. V. Diaconu, “Multichannel spectroreflectometry: a noninvasive method for assessment of on-line hemoglobin derivatives,” Appl. Opt. 48, D52–D61 (2009).
    [CrossRef] [PubMed]
  13. M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
    [CrossRef] [PubMed]
  14. G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).
  15. C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 24, 737–740 (1983).

2009 (1)

2007 (1)

G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).

2006 (1)

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

2003 (1)

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003).
[PubMed]

2001 (2)

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001).
[CrossRef]

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

1999 (3)

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999).
[CrossRef]

J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

1995 (1)

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

1988 (1)

1983 (1)

C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 24, 737–740 (1983).

1978 (1)

1975 (1)

R. N. Pittman and B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

Bartsch, U.

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

Beach, J.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Beach, J. M.

J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999).
[CrossRef]

J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

Benediktsson, J. A.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Birol, G.

G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).

Budzynski, E.

G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).

Delori, F. C.

Diaconu, V.

Dinn, R. B.

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003).
[PubMed]

Duling, B. R.

R. N. Pittman and B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

Eysteinsson, T.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Feke, G. T.

G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retina vessels,” J. Opt. Soc. Am. 68, 526–531 (1978).
[CrossRef] [PubMed]

C. E. Riva and G. T. Feke, “Laser Doppler velocimetry in the measurement of retinal blood flow,” in The Biomedical Laser: Technology and Clinical Applications, L.Golman, ed. (Springer, 1981), pp. 135–161.11.

Grunwald, J. E.

C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 24, 737–740 (1983).

Halldorsson, G. H.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Hammer, M.

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001).
[CrossRef]

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

Hardarson, H. S.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Harris, A.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003).
[PubMed]

Hopkins, M. F.

J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999).
[CrossRef]

Jensen, P. K.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Kagemann, L.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003).
[PubMed]

Karlsson, R. A.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Kim, D.

J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

Königsdörffer, E.

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

Kraft, J.

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001).
[CrossRef]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

Leistritz, L.

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

Leistritz, S.

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

Linsenmeier, R. A.

G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).

Petrig, B. L.

C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 24, 737–740 (1983).

Pittman, R. N.

R. N. Pittman and B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

Rechtman, E.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003).
[PubMed]

Riva, C. E.

C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 24, 737–740 (1983).

G. T. Feke and C. E. Riva, “Laser Doppler measurements of blood velocity in human retina vessels,” J. Opt. Soc. Am. 68, 526–531 (1978).
[CrossRef] [PubMed]

C. E. Riva and G. T. Feke, “Laser Doppler velocimetry in the measurement of retinal blood flow,” in The Biomedical Laser: Technology and Clinical Applications, L.Golman, ed. (Springer, 1981), pp. 135–161.11.

Sabharwal, Y. S.

J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999).
[CrossRef]

Schweitzer, D.

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001).
[CrossRef]

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

Schwentzer, K. J.

J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

Scibor, M.

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

Srinivas, S.

J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

Stefánsson, E.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Strobel, J.

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

Thamm, E.

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001).
[CrossRef]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

Thorsteinsson, A.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Tiedeman, J. S.

J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999).
[CrossRef]

Wang, S.

G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).

Wangsa-Wirawan, N. D.

G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).

Zoega, G. M.

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

Am. J Physiol. (1)

G. Birol, S. Wang, E. Budzynski, N. D. Wangsa-Wirawan, and R. A. Linsenmeier, “Oxygen distribution and consumption in the macaque retina,” Am. J Physiol. 293, 1696–1704 (2007).

Appl. Opt. (2)

IEEE Trans. Biomed. Eng. (2)

M. Hammer, S. Leistritz, L. Leistritz, and D. Schweitzer, “Light paths in retinal vessel oxymetry,” IEEE Trans. Biomed. Eng. 48, 592–598 (2001).
[CrossRef] [PubMed]

D. Schweitzer, M. Hammer, J. Kraft, E. Thamm, E. Königsdörffer, and J. Strobel, “In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers,” IEEE Trans. Biomed. Eng. 46, 1454–1465 (1999).
[CrossRef] [PubMed]

Int. Ophthalmol. (1)

D. Schweitzer, E. Thamm, M. Hammer, and J. Kraft, “A new method for the measurement of oxygen saturation at the human ocular fundus,” Int. Ophthalmol. 23, 347–353 (2001).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (2)

C. E. Riva, J. E. Grunwald, and B. L. Petrig, “Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study,” Invest. Ophthalmol. Visual Sci. 24, 737–740 (1983).

H. S. Hardarson, A. Harris, R. A. Karlsson, G. H. Halldorsson, L. Kagemann, E. Rechtman, G. M. Zoega, T. Eysteinsson, J. A. Benediktsson, A. Thorsteinsson, P. K. Jensen, J. Beach, and E. Stefánsson, “Automatic retinal oximetry” Invest. Ophthalmol. Visual Sci. 47, 5011–5016 (2006).
[CrossRef]

J. Appl. Physiol. (2)

J. M. Beach, K. J. Schwentzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessel by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol. 86, 748–758 (1999).
[PubMed]

R. N. Pittman and B. R. Duling, “A new method for the measurement of percent oxyhemoglobin,” J. Appl. Physiol. 38, 315–320 (1975).
[PubMed]

J. Opt. Soc. Am. (1)

Ophthalmic Surg. Lasers Imaging (1)

A. Harris, R. B. Dinn, L. Kagemann, and E. Rechtman, “A review of methods for human retinal oximetry,” Ophthalmic Surg. Lasers Imaging 34, 152–164 (2003).
[PubMed]

Proc. SPIE (2)

J. M. Beach, J. S. Tiedeman, M. F. Hopkins, and Y. S. Sabharwal, “Multispectral fundus imaging for early detection of diabetic retinopathy,” Proc. SPIE 3603, 114–121 (1999).
[CrossRef]

D. Schweitzer, L. Leistritz, M. Hammer, M. Scibor, U. Bartsch, and J. Strobel, “Calibration-free measurement of the oxygen saturation in retinal vessels of men,” Proc. SPIE 2393, 210–218 (1995).
[CrossRef]

Other (1)

C. E. Riva and G. T. Feke, “Laser Doppler velocimetry in the measurement of retinal blood flow,” in The Biomedical Laser: Technology and Clinical Applications, L.Golman, ed. (Springer, 1981), pp. 135–161.11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic view of the multichannel reflectometry system for the eye. Ob, lens; MP1, mirror pinhole 1; MP2, mirror pinhole 2; M1, mirror 1; M2, mirror 2; A, aperture; K, neutral filter; S, shatter.

Fig. 2
Fig. 2

Graphical representation of the model fit applied to the experimental data obtained from (a) optic nerve capillaries, (b) arteries, and (c) veins. The contributions of hemoglobin, oxyhemoglobin, and optical medium absorption including the scatterings are shown.

Fig. 3
Fig. 3

Graphical representation for the two mechanisms representing the frontal scattering on the endothelial structure of blood vessels and the rear reflection with scattering on the hematocrits [Eq. (3)].

Fig. 4
Fig. 4

(a) Graphical representation for the calculated fitting curve by the second model [Eq. (2)] applied to the experimental data obtained from the (a) optic nerve, (b) arteries, and (c) veins. The contributions of hemoglobin, oxyhemoglobin, and optical medium absorption including the scatterings are shown. The rear reflection (red scattering light) estimated by the multi-Gaussian function is also represented in the figure.

Fig. 5
Fig. 5

(a) Example of blood oxygenation values derived with the second model and (b) intensity of the light scattered in the red wavelength zone (R scattering factor) of the reflectometry function derived by the multi-Gaussian function from the second model applied for 30 consecutive reflectometry measurements on the arteries, veins, and optic nerve capillaries from one subject.

Fig. 6
Fig. 6

Correlation between the oxygenation values and the R scattering factor for the results from artery, vein, and optic nerve capillaries.

Fig. 7
Fig. 7

Mean values for oxyhemoglobin blood content (percent) measured from arteries’, veins’, and optic nerve capillaries’ zones in 12 subjects.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A ( λ ) = m 1 * S Hb ( λ ) + m 2 * S OHb ( λ ) + m 3 * λ n + m 4 * k .
A ( λ ) = m 1 * S Hb ( λ ) + m 2 * S OHb ( λ ) + m 3 * λ n + m 4 * k i = 1 n m 4 + i * N ( μ i , σ 2 ) .
I S ( λ ) = I S 1 ( λ ) + I S 2 ( λ ) .
I S 1 ( λ ) = K * I 0 ( λ ) * [ m 1 * S HB 1 ( λ ) + m 2 S OHb 1 ( λ ) ] ,
I S 2 ( λ ) = K S * [ I 0 ( λ ) I S 1 ( λ ) ] * { 1 10 exp { 2 * d v * [ m 1 * S HB ( λ ) + m 2 * S OHb ( λ ) ] } } ,

Metrics