Abstract

Fiber Bragg gratings engraved in standard telecommunications-grade single-mode fibers without previous hydrogen loading show enhanced thermal stability for high-temperature measurements up to 800°C. The reflectivity decay at that temperature is adequate for industrial applications with a weekly change of sensing heads.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kashyap, “Strength, annealing, and lifetime gratings,” in Fiber Bragg Gratings, (Academic, 1999), pp. 435–440.
  2. O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17, 975–979 (2006).
    [CrossRef]
  3. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29, 2360–2362 (2004).
    [CrossRef] [PubMed]
  4. D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultra high temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
    [CrossRef]
  5. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
    [CrossRef]
  6. M. Fokine, “Formation of thermally stable chemical composition gratings in optical fibers,” J. Opt. Soc. Am. B 19, 1759–1765 (2002).
    [CrossRef]
  7. J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
    [CrossRef]
  8. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultra-high temperature regenerated gratings in boron codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33, 1917–1919 (2008).
    [CrossRef] [PubMed]
  9. W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
    [CrossRef]
  10. M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
    [CrossRef]

2008 (2)

2006 (2)

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17, 975–979 (2006).
[CrossRef]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

2004 (2)

N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29, 2360–2362 (2004).
[CrossRef] [PubMed]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultra high temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[CrossRef]

2002 (1)

2001 (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

1993 (1)

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Bandyopadhyay, S.

Bayon, J. F.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Bemage, P.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Butov, O. V.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17, 975–979 (2006).
[CrossRef]

Canning, J.

Cook, K.

Dianov, E. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17, 975–979 (2006).
[CrossRef]

Ding, H. M.

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultra high temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[CrossRef]

Douay, M.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Fokine, M.

Georges, T.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Golant, K. M.

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17, 975–979 (2006).
[CrossRef]

Grobnic, D.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultra high temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[CrossRef]

Groothoff, N.

Kashyap, R.

R. Kashyap, “Strength, annealing, and lifetime gratings,” in Fiber Bragg Gratings, (Academic, 1999), pp. 435–440.

Kristensen, M.

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

Mihailov, S. J.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultra high temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[CrossRef]

Monerie, M.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Niay, P.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Poumellec, B.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultra high temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[CrossRef]

Stevenson, M.

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

Xie, W. X.

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Grobnic, S. J. Mihailov, C. W. Smelser, and H. M. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultra high temperature applications,” IEEE Photon. Technol. Lett. 16, 2505–2507 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (2)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17, 1009–1013 (2006).
[CrossRef]

O. V. Butov, E. M. Dianov, and K. M. Golant, “Nitrogen-doped silica core fibres for Bragg grating sensors operating at elevated temperatures,” Meas. Sci. Technol. 17, 975–979 (2006).
[CrossRef]

Opt. Commun. (1)

W. X. Xie, P. Niay, P. Bemage, M. Douay, J. F. Bayon, T. Georges, M. Monerie, and B. Poumellec, “Experimental evidence of two types of photorefractive effects occurring during photoinscription of Bragg gratings within germanium silicate fibers,” Opt. Commun. 104, 185–195 (1993).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

M. Kristensen, “Ultraviolet-light-induced processes in germanium-doped silica,” Phys. Rev. B 64, 144201 (2001).
[CrossRef]

Sensors (1)

J. Canning, M. Stevenson, S. Bandyopadhyay, and K. Cook, “Extreme silica optical fibre gratings,” Sensors 8, 6448–6452(2008).
[CrossRef]

Other (1)

R. Kashyap, “Strength, annealing, and lifetime gratings,” in Fiber Bragg Gratings, (Academic, 1999), pp. 435–440.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Periodic growth cycle of FBGs recorded in a nonhydrogenated single-mode fiber. The optical reflected signal (squares) and the peak wavelength (circles) are plotted as a function of the accumulated dose. The connecting lines are only guides for the eye.

Fig. 2
Fig. 2

Temperature evolution during the first heating cycle of an FBG recorded in a standard single-mode fiber and the corresponding change in the optical reflected signal. The connecting lines are only guides for the eye.

Fig. 3
Fig. 3

Room temperature reflection spectra of an FBG: initial spectrum measured after the recording process (dashed line) and the final spectrum taken after three high- temperature cycles as described in the text (continuous line).

Fig. 4
Fig. 4

Temperature evolution during the second heating cycle of an FBG (the connecting line is a guide for the eye), the observed reflected signal, and the corresponding best-fitted line.

Fig. 5
Fig. 5

Temperature evolution during a subsequent 800 ° C heating cycle of an FBG (the connecting lines are guides for the eye) and the observed reflected signal. The continuous line shows the best-fit result for the 800 ° C plateau.

Metrics