Abstract

Fiber optical applications are primarily limited by group-velocity dispersion. In single-mode fibers, material and waveguide dispersion yield a total chromatic dispersion where no modal influences occur. However, modal dispersion plays a significant role in multimode fibers, whereas waveguide dispersion is negligible. The concern of this report is the investigation of the dispersion properties of photonic crystal fibers, with both single-mode and multimode operation, using a time-frequency domain white-light Mach-Zehnder interferometer. The results demonstrate the possibility to separate different transverse fiber modes and, hence, to measure the material, waveguide, and modal dispersion of optical fibers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926(2002).
    [CrossRef]
  2. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007).
    [CrossRef] [PubMed]
  3. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 13, 961–963(1997).
    [CrossRef]
  4. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.
  5. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
    [CrossRef]
  6. X. Liu, J. Lægsgaard, and D. Turchinovich, “Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers,” Opt. Express 18, 15475–15483 (2010).
    [CrossRef] [PubMed]
  7. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13, 1055–1058 (2005).
    [CrossRef] [PubMed]
  8. K. Suzuki, H. Kubota, and S. Kawanishi, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
    [CrossRef] [PubMed]
  9. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
    [CrossRef]
  10. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [CrossRef] [PubMed]
  11. R. Spittel, K. Mörl, V. Reichel, and H. Bartelt, “Dispersion characterization of microstructured optical fibers,” DGaO Proceedings 2008 (2008).
  12. T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365(2009).
    [CrossRef]
  13. P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

2011

P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

2010

2009

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365(2009).
[CrossRef]

2007

2005

2004

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

2002

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

A. L. Gaeta, “Nonlinear propagation and continuum generation in microstructured optical fibers,” Opt. Lett. 27, 924–926(2002).
[CrossRef]

2001

K. Suzuki, H. Kubota, and S. Kawanishi, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
[CrossRef] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

1997

Agrawal, G. P.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

Bartelt, H.

R. Spittel, K. Mörl, V. Reichel, and H. Bartelt, “Dispersion characterization of microstructured optical fibers,” DGaO Proceedings 2008 (2008).

Basan, F.

P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

Baselt, T.

P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

Birks, T. A.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 13, 961–963(1997).
[CrossRef]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Böswetter, P.

P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Broeng, J.

Couny, F.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Coupland, S.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Deguil-Robin, N.

Ebert, F.

P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

Farr, L.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Flea, R.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Fujita, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Gaeta, A. L.

Hartmann, P.

P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Jakobsen, C.

Kardas, T. M.

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365(2009).
[CrossRef]

Kawanishi, S.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

K. Suzuki, H. Kubota, and S. Kawanishi, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
[CrossRef] [PubMed]

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 13, 961–963(1997).
[CrossRef]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Kubota, H.

K. Suzuki, H. Kubota, and S. Kawanishi, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
[CrossRef] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Lægsgaard, J.

Langford, A.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Lawman, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Liem, A.

Limpert, J.

Lin, Q.

Liu, X.

Manek-Hönninger, I.

Mangan, B. J.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Mason, M.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Mörl, K.

R. Spittel, K. Mörl, V. Reichel, and H. Bartelt, “Dispersion characterization of microstructured optical fibers,” DGaO Proceedings 2008 (2008).

Nolte, S.

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Petersson, A.

Radzewicz, C.

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365(2009).
[CrossRef]

Reichel, V.

R. Spittel, K. Mörl, V. Reichel, and H. Bartelt, “Dispersion characterization of microstructured optical fibers,” DGaO Proceedings 2008 (2008).

Roberts, P. J.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Röser, F.

Russell, P. S. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 13, 961–963(1997).
[CrossRef]

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Sabert, H.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Salin, F.

Schreiber, T.

Spittel, R.

R. Spittel, K. Mörl, V. Reichel, and H. Bartelt, “Dispersion characterization of microstructured optical fibers,” DGaO Proceedings 2008 (2008).

Suzuki, K.

K. Suzuki, H. Kubota, and S. Kawanishi, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676–680 (2001).
[CrossRef] [PubMed]

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Tanaka, M.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

Tünnermann, A.

Turchinovich, D.

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Williams, D. P.

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Yin, L.

Zellmer, H.

Electron. Lett.

K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3 dB/km) polarisation-maintaining photonic crystal fibre,” Electron. Lett. 37, 1399–1401 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russell, “Very high numerical aperture fibers,” IEEE Photon. Technol. Lett. 16, 843–845 (2004).
[CrossRef]

Opt. Commun.

T. M. Kardaś and C. Radzewicz, “Broadband near-infrared fibers dispersion measurement using white-light spectral interferometry,” Opt. Commun. 282, 4361–4365(2009).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

P. Böswetter, T. Baselt, F. Ebert, F. Basan, and P. Hartmann, “Group-velocity dispersion in multimode photonic crystal fibers measured using time-domain white-light interferometry,” Proc. SPIE 7914, 7914-73 (2011).

Science

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[CrossRef] [PubMed]

Other

R. Spittel, K. Mörl, V. Reichel, and H. Bartelt, “Dispersion characterization of microstructured optical fibers,” DGaO Proceedings 2008 (2008).

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Low loss (1.7 dB/km) hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2004), paper PD24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of the interferometer containing: SC—supercontinuum light source ILUM 100, ESM—endlessly single-mode fiber, BS—beam splitter, AT—attenuator, DL—delay line, M—mirror, TF—test fiber, Spec—spectrometer.

Fig. 2
Fig. 2

(a) Group delay, GVD measurement and (b) scanning electron micrograph of the fiber LMA-10.

Fig. 3
Fig. 3

(a) Group delay, GVD measurement and (b) scanning electron micrograph of the fiber LMA-5.

Fig. 4
Fig. 4

(a) Differential group delays and (b) GVDs of a PCF for the fundamental mode and higher-order modes (sample 1).

Fig. 5
Fig. 5

(a) Differential group delays and (b) GVDs of a subsequent fiber sample (sample 2).

Fig. 6
Fig. 6

(a) and (b) Scanning electron micrographs of the arbitrary fiber samples 1 and 2, respectively. (c) Comparison of the GVD for both subsequent samples, measured for the fundamental mode. The inset shows a close-up of the region around the ZDW and its shift of approximately 15 nm .

Tables (2)

Tables Icon

Table 1 Sellmeier Coefficients A i and λ 0 of the LMA Fibers

Tables Icon

Table 2 Sellmeier Coefficients A i and λ 0 of the PCF Samples Measured for the Fundamental Mode

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

D mat = 1 c 0 d n g d λ
D WG = n co n cl λ c 0 V d 2 ( V B ) d V 2
V = k a n co 2 n cl 2
B = ( β / k ) 2 n cl 2 n co 2 n cl 2 ,
D = D mat + D WG + D mod .
τ L = A 1 λ 2 + A 2 + A 3 λ 2
D = d d λ ( τ L ) = 2 ( A 3 λ A 1 λ 3 ) ,
λ 0 = A 1 A 3 4 .

Metrics