Abstract

This paper presents an overview of optical fiber sensors based on multimode interference with a focus on refractometric applications. A specific configuration is presented to measure the refractive index of the surrounding liquid based on the Fresnel reflection in the fiber tip, combined with a simple interrogation technique that uses two fiber Bragg gratings as discrete optical sources, with the measurand information encoded in the relative intensity variation of the reflected signals. A resolution of 1.75×103RIU is achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  2. A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
    [CrossRef]
  3. Q. Wang and G. Farrell, “Multimode fiber based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006).
    [CrossRef]
  4. D. Donlagic and M. Zavrsnik, “Fiber-optic microbend sensor structure,” Opt. Lett. 22, 837–839 (1997).
    [CrossRef]
  5. Q. Wang, G. Farrell, and W. Yan, “Investigation on single mode–multimode–single mode fiber structure,” J. Lightwave Technol. 26, 512–519 (2008).
    [CrossRef]
  6. X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
    [CrossRef]
  7. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
    [CrossRef]
  8. A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
    [CrossRef]
  9. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
    [CrossRef]
  10. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  11. W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
    [CrossRef] [PubMed]
  12. Q. Wang and G. Farrell, “All-fiber multimode-interference based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006).
    [CrossRef] [PubMed]
  13. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach–Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32, 3074–3076 (2007).
    [CrossRef] [PubMed]
  14. J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009).
    [CrossRef]
  15. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356(2009).
    [CrossRef]
  16. J. Zhang and S. Peng, “A compact SMS refractometer based on HF corrosion scheme,” presented at the Symposium on Photonics and Optoelectronic (SOPO), Chengdu, China, June 19–21 2010, pp. 1–4.
  17. Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single mode–multimode–single mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
    [CrossRef]
  18. S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854(2011).
    [CrossRef] [PubMed]
  19. S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
    [CrossRef]
  20. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36, 2233–2235 (2011).
    [CrossRef] [PubMed]
  21. Q. Wu, S. B. Yan, Y. Ma, P. Wang, C. Yu, and G. Farrell, “Fiber refractometer based on a fiber Bragg grating and single-mode–multimode–single-mode fiber structure,” Opt. Lett. 36, 2197–2199 (2011).
    [CrossRef] [PubMed]
  22. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer—analysis and experiment,” Opt. Express 19, 7937–7944 (2011).
    [CrossRef] [PubMed]

2011 (6)

2009 (3)

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009).
[CrossRef]

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J.-P. Meunier, “Strain and temperature sensing characteristics of single-mode-multimode-single-mode structures,” J. Lightwave Technol. 27, 2348–2356(2009).
[CrossRef]

2008 (1)

2007 (1)

2006 (5)

Q. Wang and G. Farrell, “Multimode fiber based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006).
[CrossRef]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[CrossRef]

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31, 2547–2549 (2006).
[CrossRef] [PubMed]

Q. Wang and G. Farrell, “All-fiber multimode-interference based refractometer sensor: proposal and design,” Opt. Lett. 31, 317–319 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

1997 (1)

1995 (1)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Antony, C. S.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Araújo, F. M.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach–Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32, 3074–3076 (2007).
[CrossRef] [PubMed]

Brambilla, G.

Caldas, P.

Ding, M.

Donlagic, D.

Farahi, F.

Farrell, G.

Ferreira, L. A.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach–Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32, 3074–3076 (2007).
[CrossRef] [PubMed]

Frazão, O.

Gu, X.

Hatta, A. M.

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single mode–multimode–single mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

Johnson, E. G.

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
[CrossRef]

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[CrossRef]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[CrossRef]

Kobelke, J.

Kumar, A.

Kumar, Y. B. P.

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[CrossRef]

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Li, H.

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

Li, L.

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

Ma, Y.

Malcata, F. X.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854(2011).
[CrossRef] [PubMed]

Marin, E.

Mehta, A.

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength tunable fiber lens based on multimode interference,” J. Lightwave Technol. 22, 469–477 (2004).
[CrossRef]

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

Meunier, J.-P.

Mohammed, W. S.

Moloney, J. V.

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[CrossRef]

Peng, S.

J. Zhang and S. Peng, “A compact SMS refractometer based on HF corrosion scheme,” presented at the Symposium on Photonics and Optoelectronic (SOPO), Chengdu, China, June 19–21 2010, pp. 1–4.

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Peyghambarian, N.

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

Santos, J. L.

Schulzgen, A.

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

Schuster, K.

Semenova, Y.

Sharma, P.

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Silva, S.

S. Silva, J. L. Santos, F. X. Malcata, J. Kobelke, K. Schuster, and O. Frazão, “Optical refractometer based on large-core air-clad photonic crystal fibers,” Opt. Lett. 36, 852–854(2011).
[CrossRef] [PubMed]

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Smith, P. W. E.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Sun, W.

J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009).
[CrossRef]

Temyanko, V. L.

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

Tripathi, S. M.

Varshney, R. K.

Viegas, J.

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach–Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32, 3074–3076 (2007).
[CrossRef] [PubMed]

Wang, P.

Wang, Q.

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wu, Q.

Yan, S. B.

Yan, W.

Yu, C.

Yuan, L.

J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009).
[CrossRef]

Zavrsnik, M.

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhang, J.

J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009).
[CrossRef]

J. Zhang and S. Peng, “A compact SMS refractometer based on HF corrosion scheme,” presented at the Symposium on Photonics and Optoelectronic (SOPO), Chengdu, China, June 19–21 2010, pp. 1–4.

Zhang, Y.

J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009).
[CrossRef]

Zhu, X.

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhu, A. Schulzgen, H. Li, L. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “High-power fiber lasers and amplifiers based on multimode interference,” IEEE J. Sel. Top. Quantum Electron. 15, 71–78 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett. 15, 1129–1131 (2003).
[CrossRef]

J. Lightwave Technol. (4)

Meas. Sci. Technol. (4)

J. Zhang, Y. Zhang, W. Sun, and L. Yuan, “Multiplexing multimode fiber and Fizeau etalon: a simultaneous measurement scheme of temperature and strain,” Meas. Sci. Technol. 20, 065206 (2009).
[CrossRef]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17, 1129–1133 (2006).
[CrossRef]

Q. Wu, Y. Semenova, P. Wang, A. M. Hatta, and G. Farrell, “Experimental demonstration of a simple displacement sensor based on a bent single mode–multimode–single mode fiber structure,” Meas. Sci. Technol. 22, 025203 (2011).
[CrossRef]

S. Silva, O. Frazão, J. Viegas, L. A. Ferreira, F. M. Araújo, F. X. Malcata, and J. L. Santos, “Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure,” Meas. Sci. Technol. 22, 085201 (2011).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Q. Wang and G. Farrell, “Multimode fiber based edge filter for optical wavelength measurement application,” Microw. Opt. Technol. Lett. 48, 900–902 (2006).
[CrossRef]

Opt. Commun. (1)

A. Kumar, R. K. Varshney, C. S. Antony, and P. Sharma, “Transmission characteristics of SMS fiber optic sensor structures,” Opt. Commun. 219, 215–219 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Other (1)

J. Zhang and S. Peng, “A compact SMS refractometer based on HF corrosion scheme,” presented at the Symposium on Photonics and Optoelectronic (SOPO), Chengdu, China, June 19–21 2010, pp. 1–4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the interrogation system.

Fig. 2
Fig. 2

Spectral response of the MMI structure in reflection.

Fig. 3
Fig. 3

Two discrete narrow sources based on FBGs.

Fig. 4
Fig. 4

RI measurement using the experimental setup of Fig. 1.

Fig. 5
Fig. 5

Determination of the RI resolution obtained with the experimental setup of Fig. 1.

Tables (1)

Tables Icon

Table 1 MMI-Based Optical Fiber Sensors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = 16 n co a 2 ( 4 m 3 ) L ,

Metrics