Abstract

We present a large effective area fiber design using dual-shape core (DSC) fiber. The fiber is essentially a depressed-index clad fiber with a dual-shape-core consisting of a large central core and a small slightly lower-index side core. The refractive indices of the two cores are so chosen as to perfectly guide the fundamental mode. All the higher-order modes of the fiber are leaky. The fiber shows large-mode-area single-mode operation by higher-order modes discrimination. We have analyzed the structure by using the transfer matrix method. Our numerical simulation results suggest that the DSC fiber can have single-mode operation with effective mode area as large as 580μm2 and low bending loss. The bending loss of the fiber could be brought down by more than 2 orders of magnitude compared to the corresponding step-index fiber. We also show that the mode field area is relatively insensitive to design param eters in comparison to the leakage loss of the mode. The fiber is amenable to fabrication by modified chemical vapor deposition technology and is expected to find applications in high power fiber lasers and amplifiers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
    [CrossRef]
  2. N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, and M. Ibsen, “High power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
    [CrossRef]
  3. G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997).
    [CrossRef]
  4. S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974).
    [CrossRef]
  5. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fibre laser with 1.36 kW of continuous-wave output power,” Opt. Express 126088–6092 (2004).
    [CrossRef] [PubMed]
  6. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
    [CrossRef]
  7. W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30, 2855–2857 (2005).
    [CrossRef] [PubMed]
  8. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24, 1689–1697(2007).
    [CrossRef]
  9. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
    [CrossRef]
  10. F. D. Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “Diffraction-limited, 300 kW peak-power pulses from a coiled multimode fiber amplifier,” Opt. Lett. 27, 518–520(2002).
    [CrossRef]
  11. S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30, 3225–3227(2005).
    [CrossRef] [PubMed]
  12. S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31, 2532–2534(2006).
    [CrossRef] [PubMed]
  13. M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60 fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett. 32, 2372–2374 (2007).
    [CrossRef] [PubMed]
  14. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
    [CrossRef] [PubMed]
  15. S. Suzuki, A. Schülzgen, and N. Peyghambarian, “Single-mode fiber laser based on core-cladding mode conversion,” Opt. Lett. 33, 351–353 (2008).
    [CrossRef] [PubMed]
  16. V. Rastogi and K. S. Chiang, “Propagation characteristics of a segmented cladding fiber,” Opt. Lett. 26, 491–493 (2001).
    [CrossRef]
  17. V. Rastogi and K. S. Chiang, “Analysis of segmented-cladding fiber by the radial-effective-index method,” J. Opt. Soc. Am. B 21, 258–265 (2004).
    [CrossRef]
  18. A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.
  19. V. Rastogi and K. S. Chiang, “Leaky optical fiber for large mode area single mode operation,” Electron. Lett. 39, 1110–1112 (2003).
    [CrossRef]
  20. A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode area optical fiber,” J. Opt. A Pure Appl. Opt. 10, 015303 (2008).
    [CrossRef]
  21. A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008).
    [CrossRef]
  22. M. B-Astruc, F. Gooijer, N. Montaigne, and P. Sillard, “Trench-assisted profiles for large-effective-area single-mode fibers,” presented at the 34th European Conference on Optical Communication (ECOC), Brussels, Belgium, 21–25 September, 2008.
  23. P. K. Bachmann, “Method of manufacturing fluorine-doped optical fibers,” U.S. patent 4,468,413 (1984).
  24. K. Thyagarajan, S. Diggavi, A. Taneja, and A. K. Ghatak, “Simple numerical technique for the analysis of cylindrically symmetric refractive-index profile optical fibers,” Appl. Opt. 30, 3877–3879 (1991).
    [CrossRef] [PubMed]
  25. K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
    [CrossRef]
  26. E.-G. Neumann, Single-Mode Fibers: Fundamentals(Springer-Verlag, 1988) Chap. 5.

2008 (3)

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode area optical fiber,” J. Opt. A Pure Appl. Opt. 10, 015303 (2008).
[CrossRef]

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008).
[CrossRef]

S. Suzuki, A. Schülzgen, and N. Peyghambarian, “Single-mode fiber laser based on core-cladding mode conversion,” Opt. Lett. 33, 351–353 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

2005 (2)

2004 (2)

2003 (1)

V. Rastogi and K. S. Chiang, “Leaky optical fiber for large mode area single mode operation,” Electron. Lett. 39, 1110–1112 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

1999 (2)

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, and M. Ibsen, “High power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
[CrossRef]

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

1997 (1)

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997).
[CrossRef]

1991 (1)

1981 (1)

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
[CrossRef]

1974 (1)

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974).
[CrossRef]

Bachmann, P. K.

P. K. Bachmann, “Method of manufacturing fluorine-doped optical fibers,” U.S. patent 4,468,413 (1984).

B-Astruc, M.

M. B-Astruc, F. Gooijer, N. Montaigne, and P. Sillard, “Trench-assisted profiles for large-effective-area single-mode fibers,” presented at the 34th European Conference on Optical Communication (ECOC), Brussels, Belgium, 21–25 September, 2008.

Birks, T. A.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Broderick, N. G. R.

N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
[CrossRef]

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, and M. Ibsen, “High power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

Caplen, J.

N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
[CrossRef]

Caplen, J. E.

Chiang, K. S.

V. Rastogi and K. S. Chiang, “Analysis of segmented-cladding fiber by the radial-effective-index method,” J. Opt. Soc. Am. B 21, 258–265 (2004).
[CrossRef]

V. Rastogi and K. S. Chiang, “Leaky optical fiber for large mode area single mode operation,” Electron. Lett. 39, 1110–1112 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, “Propagation characteristics of a segmented cladding fiber,” Opt. Lett. 26, 491–493 (2001).
[CrossRef]

A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.

Chu, P. L.

A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

De Sandro, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Diggavi, S.

Dimarcello, F. V.

Dong, L.

Dussardier, B.

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008).
[CrossRef]

Ghalmi, S.

Ghatak, A. K.

Goldberg, L.

Gooijer, F.

M. B-Astruc, F. Gooijer, N. Montaigne, and P. Sillard, “Trench-assisted profiles for large-effective-area single-mode fibers,” presented at the 34th European Conference on Optical Communication (ECOC), Brussels, Belgium, 21–25 September, 2008.

Ibsen, M.

Jasapara, J.

Jeong, Y.

Kakkar, C.

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008).
[CrossRef]

Kawakami, S.

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974).
[CrossRef]

Kliner, D. A. V.

Knight, J. C.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Koplow, J. P.

Kracht, D.

Kumar, A.

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008).
[CrossRef]

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode area optical fiber,” J. Opt. A Pure Appl. Opt. 10, 015303 (2008).
[CrossRef]

Lees, G. P.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997).
[CrossRef]

Li, J.

McLaughlin, J. M.

Monberg, E.

Montaigne, N.

M. B-Astruc, F. Gooijer, N. Montaigne, and P. Sillard, “Trench-assisted profiles for large-effective-area single-mode fibers,” presented at the 34th European Conference on Optical Communication (ECOC), Brussels, Belgium, 21–25 September, 2008.

Moore, S. W.

Morishita, K.

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
[CrossRef]

Neumann, E.-G.

E.-G. Neumann, Single-Mode Fibers: Fundamentals(Springer-Verlag, 1988) Chap. 5.

Newson, T. P.

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997).
[CrossRef]

Nicholson, J. W.

Nilsson, J.

Nishida, S.

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974).
[CrossRef]

Offerhause, H. L.

N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
[CrossRef]

Payne, D. N.

Peng, G. D.

A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.

Peng, X.

Peyghambarian, N.

Prochnow, O.

Ramachandran, S.

Rastogi, V.

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode area optical fiber,” J. Opt. A Pure Appl. Opt. 10, 015303 (2008).
[CrossRef]

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008).
[CrossRef]

V. Rastogi and K. S. Chiang, “Analysis of segmented-cladding fiber by the radial-effective-index method,” J. Opt. Soc. Am. B 21, 258–265 (2004).
[CrossRef]

V. Rastogi and K. S. Chiang, “Leaky optical fiber for large mode area single mode operation,” Electron. Lett. 39, 1110–1112 (2003).
[CrossRef]

V. Rastogi and K. S. Chiang, “Propagation characteristics of a segmented cladding fiber,” Opt. Lett. 26, 491–493 (2001).
[CrossRef]

A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.

Richardson, D. J.

N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
[CrossRef]

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, and M. Ibsen, “High power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997).
[CrossRef]

Ruehl, A.

Russell, P. St. J.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

Sahu, J. K.

Sammut, R. A.

N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
[CrossRef]

Schultz, M.

Schülzgen, A.

Sillard, P.

M. B-Astruc, F. Gooijer, N. Montaigne, and P. Sillard, “Trench-assisted profiles for large-effective-area single-mode fibers,” presented at the 34th European Conference on Optical Communication (ECOC), Brussels, Belgium, 21–25 September, 2008.

Suzuki, S.

Taneja, A.

Taverner, D.

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, and M. Ibsen, “High power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997).
[CrossRef]

Teodoro, F. D.

Thyagarajan, K.

Wandt, D.

Wisk, P.

Wong, W. S.

Yan, M. F.

Yeung, A.

A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.

Appl. Opt. (1)

Electron. Lett. (3)

G. P. Lees, D. Taverner, D. J. Richardson, L. Dong, and T. P. Newson, “Q-switched erbium doped fibre laser utilising a novel large mode area fibre,” Electron. Lett. 33, 393–394(1997).
[CrossRef]

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
[CrossRef]

V. Rastogi and K. S. Chiang, “Leaky optical fiber for large mode area single mode operation,” Electron. Lett. 39, 1110–1112 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. Morishita, “Numerical analysis of pulse broadening in graded index optical fibers,” IEEE Trans. Microwave Theory Tech. 29, 348–352 (1981).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

A. Kumar and V. Rastogi, “Design and analysis of a multilayer cladding large-mode area optical fiber,” J. Opt. A Pure Appl. Opt. 10, 015303 (2008).
[CrossRef]

A. Kumar, V. Rastogi, C. Kakkar, and B. Dussardier, “Co-axial dual-core resonant leaky fibre for optical amplifiers,” J. Opt. A Pure Appl. Opt. 10, 115306 (2008).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Fiber Technol. (1)

N. G. R. Broderick, H. L. Offerhause, D. J. Richardson, R. A. Sammut, J. Caplen, and L. Dong, “Large mode area fibers for high power applications,” Opt. Fiber Technol. 5, 185–196 (1999).
[CrossRef]

Opt. Lett. (10)

M. Schultz, O. Prochnow, A. Ruehl, D. Wandt, D. Kracht, S. Ramachandran, and S. Ghalmi, “Sub-60 fs ytterbium-doped fiber laser with a fiber-based dispersion compensation,” Opt. Lett. 32, 2372–2374 (2007).
[CrossRef] [PubMed]

S. Suzuki, A. Schülzgen, and N. Peyghambarian, “Single-mode fiber laser based on core-cladding mode conversion,” Opt. Lett. 33, 351–353 (2008).
[CrossRef] [PubMed]

V. Rastogi and K. S. Chiang, “Propagation characteristics of a segmented cladding fiber,” Opt. Lett. 26, 491–493 (2001).
[CrossRef]

F. D. Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, “Diffraction-limited, 300 kW peak-power pulses from a coiled multimode fiber amplifier,” Opt. Lett. 27, 518–520(2002).
[CrossRef]

W. S. Wong, X. Peng, J. M. McLaughlin, and L. Dong, “Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers,” Opt. Lett. 30, 2855–2857 (2005).
[CrossRef] [PubMed]

S. Ramachandran, M. F. Yan, J. Jasapara, P. Wisk, S. Ghalmi, E. Monberg, and F. V. Dimarcello, “High-energy (nanojoule) femtosecond pulse delivery with record dispersion higher-order mode fiber,” Opt. Lett. 30, 3225–3227(2005).
[CrossRef] [PubMed]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31, 1797–1799 (2006).
[CrossRef] [PubMed]

S. Ramachandran, S. Ghalmi, J. W. Nicholson, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Anomalous dispersion in a solid, silica-based fiber,” Opt. Lett. 31, 2532–2534(2006).
[CrossRef] [PubMed]

J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25, 442–444 (2000).
[CrossRef]

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, and M. Ibsen, “High power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

Other (4)

E.-G. Neumann, Single-Mode Fibers: Fundamentals(Springer-Verlag, 1988) Chap. 5.

M. B-Astruc, F. Gooijer, N. Montaigne, and P. Sillard, “Trench-assisted profiles for large-effective-area single-mode fibers,” presented at the 34th European Conference on Optical Communication (ECOC), Brussels, Belgium, 21–25 September, 2008.

P. K. Bachmann, “Method of manufacturing fluorine-doped optical fibers,” U.S. patent 4,468,413 (1984).

A. Yeung, K. S. Chiang, V. Rastogi, P. L. Chu, and G. D. Peng, “Experimental demonstration of single-mode operation of large-core segmented cladding fiber,” presented at the Optical Fiber Communication Conference, Los Angeles, California, 23–27 February, 2004.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Refractive-index profile of the proposed DSC fiber.

Fig. 2
Fig. 2

Effect of d 1 on mode field area of the fundamental mode and the SM length L SM .

Fig. 3
Fig. 3

Effect of d 2 on the mode field area of fundamental mode and the SM length L SM .

Fig. 4
Fig. 4

(a) Modal field plot of the first three modes of the DSC fiber (b) Contour plot of the fundamental mode.

Fig. 5
Fig. 5

Spectral variation of effective mode area and the SM length L SM .

Fig. 6
Fig. 6

Bend loss of the LP 01 mode of the dual-shape-core fiber for different values of side-core width d 1 .

Fig. 7
Fig. 7

Bend loss of the LP 01 mode of the dual-shape-core fiber for different values of trench width d 2 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = { n 1 ; 0 < r < a n s ; a < r < b n 2 ; b < r < c n s ; r > c ,
n s = 1.444388 , a = 15 μm , Δ + = 0.05 % , Δ = 1 % and λ = 1.55 μm .
α b = 1.09 π a R W 3 S ( V , W ) exp [ 4 R W 3 Δ 3 V 2 a ]
S ( V , W ) = a 2 K 0 2 ( W ) [ 0 E 2 ( ρ ) E 2 ( a ) ρ d ρ ] 1 , W = b 1 / 2 V ,

Metrics