Abstract

A highly nonlinear suspended core fiber (SCF) has been proposed, where a geometrical design parameter called suspension factor (SF) has been used for dispersion tailoring in the infrared region (1.2μm to 2.8μm). We have investigated the effect of different suspended conditions of the SCF core on group velocity dispersion, fiber nonlinearity, and power distributions. Peak effective nonlinearity (500W1m1 at 1200nm with eight air holes) can be varied significantly with SF. The effect of SF on tailoring the zero dispersion wavelengths has been observed. The SF can also be utilized to control mode overlap between core mode and air hole mode for different sensing applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
    [CrossRef]
  2. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
    [CrossRef] [PubMed]
  3. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16, 19629–19642 (2008).
    [CrossRef] [PubMed]
  4. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1 μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
    [CrossRef]
  5. M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21, 884–886 (2009).
    [CrossRef]
  6. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
    [CrossRef] [PubMed]
  7. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
    [CrossRef]
  8. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
    [CrossRef]
  9. E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
    [CrossRef]
  10. B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
    [CrossRef] [PubMed]
  11. A. I. Konyukhov, E. A. Romanova, and V. S. Shiryaev, “Chalcogenide glasses as a medium for controlling ultrashort IR pulses: Part I,” Opt. Spectrosc. 110, 442–448 (2011).
    [CrossRef]
  12. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16, 16423–16430(2008).
    [CrossRef] [PubMed]
  13. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
    [CrossRef]
  14. G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, 4th ed. (Elsevier, 1997).
  15. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646–2657 (2009).
    [CrossRef] [PubMed]
  16. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  17. T. Monro, S. Afshar, H. Ebendorff-Heidepriem, W. Q. Zhang, and Y. Ruan, “Emerging optical fibers: new fiber materials and structures,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFH2.
  18. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
    [CrossRef] [PubMed]
  19. H. Ebendorff-Heidepriem and T. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
    [CrossRef] [PubMed]
  20. K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.
  21. COMSOL Multiphysics, Version 3.2, 2005.

2011 (1)

A. I. Konyukhov, E. A. Romanova, and V. S. Shiryaev, “Chalcogenide glasses as a medium for controlling ultrashort IR pulses: Part I,” Opt. Spectrosc. 110, 442–448 (2011).
[CrossRef]

2010 (4)

2009 (3)

2008 (3)

2007 (3)

2006 (1)

2004 (1)

2001 (1)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Afshar, S.

S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
[CrossRef]

T. Monro, S. Afshar, H. Ebendorff-Heidepriem, W. Q. Zhang, and Y. Ruan, “Emerging optical fibers: new fiber materials and structures,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFH2.

Asimakis, S.

Baker, N. J.

Birks, T. A.

Brakel, A.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Brilland, L.

Chandalia, J. K.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Chartier, T.

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Choi, D. Y.

Corradini, R.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Correa, R. A.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Coscelli, E.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Coulombier, Q.

Cucinotta, A.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Dong, L.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[CrossRef] [PubMed]

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

El-Amraoui, M.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Farin, G.

G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, 4th ed. (Elsevier, 1997).

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Fatome, J.

Feng, X.

Février, S.

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21, 884–886 (2009).
[CrossRef]

Finazzi, V.

Finsterbusch, K.

Fortier, C.

Frampton, K. E.

Fu, L.

Gadret, G.

Hayes, J.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Houizot, P.

Jules, J. C.

Kibler, B.

Konyukhov, A. I.

A. I. Konyukhov, E. A. Romanova, and V. S. Shiryaev, “Chalcogenide glasses as a medium for controlling ultrashort IR pulses: Part I,” Opt. Spectrosc. 110, 442–448 (2011).
[CrossRef]

Kosinski, S. G.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Lamont, M. R. E.

Leong, J. Y. Y.

Leon-Saval, S. G.

Liu, X.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Luther-Davies, B.

Madden, S.

Marchelli, R.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Méchin, D.

Messaddeq, Y.

Monro, T.

H. Ebendorff-Heidepriem and T. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
[CrossRef] [PubMed]

T. Monro, S. Afshar, H. Ebendorff-Heidepriem, W. Q. Zhang, and Y. Ruan, “Emerging optical fibers: new fiber materials and structures,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFH2.

Monro, T. M.

Monteville, A.

Moore, R. C.

Moss, D. J.

Mukasa, K.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

N’Guyen, T. N.

Nguyen, H. C.

Orain, H.

Pain, T.

Passaro, D.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Petropoulos, P.

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1 μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Petrovich, M. N.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Polacchini, C. F.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Poli, F.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Price, J. H. V.

Provost, L.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Renversez, G.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, “High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1 μm pumped supercontinuum generation,” J. Lightwave Technol. 24, 183–190 (2006).
[CrossRef]

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Romanova, E. A.

A. I. Konyukhov, E. A. Romanova, and V. S. Shiryaev, “Chalcogenide glasses as a medium for controlling ultrashort IR pulses: Part I,” Opt. Spectrosc. 110, 442–448 (2011).
[CrossRef]

Ruan, Y.

T. Monro, S. Afshar, H. Ebendorff-Heidepriem, W. Q. Zhang, and Y. Ruan, “Emerging optical fibers: new fiber materials and structures,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFH2.

Russell, P. St. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Sahu, J.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Sangleboeuf, J.

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

Selleri, S.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Shiryaev, V. S.

A. I. Konyukhov, E. A. Romanova, and V. S. Shiryaev, “Chalcogenide glasses as a medium for controlling ultrashort IR pulses: Part I,” Opt. Spectrosc. 110, 442–448 (2011).
[CrossRef]

Skorobogatiy, M.

Skripatchev, I.

Smektala, F.

Sozzi, M.

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

Szpulak, M.

Ta’eed, V. G.

Thomas, B. K.

Troles, J.

Trolès, J.

Ung, B.

Wadsworth, W. J.

Warren-Smith, S. C.

Webb, A.

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Windeler, R. S.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Xu, C.

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

Zhang, W. Q.

S. Afshar, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009).
[CrossRef]

T. Monro, S. Afshar, H. Ebendorff-Heidepriem, W. Q. Zhang, and Y. Ruan, “Emerging optical fibers: new fiber materials and structures,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFH2.

IEEE J. Quantum Electron. (1)

E. Coscelli, M. Sozzi, F. Poli, D. Passaro, A. Cucinotta, S. Selleri, R. Corradini, and R. Marchelli, “Toward a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers,” IEEE J. Quantum Electron. 16, 967–972 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Liu, and C. Xu, “Adiabatic coupling in tapered air-silica microstructured optical fiber,” IEEE Photon. Technol. Lett. 13, 52–54 (2001).
[CrossRef]

M. Szpulak and S. Février, “Chalcogenide As2S3 suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing,” IEEE Photon. Technol. Lett. 21, 884–886 (2009).
[CrossRef]

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103, 103108 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46, 010503 (2007).
[CrossRef]

Opt. Express (9)

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15, 9205–9221 (2007).
[CrossRef] [PubMed]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010).
[CrossRef] [PubMed]

L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16, 19629–19642 (2008).
[CrossRef] [PubMed]

B. Ung and M. Skorobogatiy, “Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared,” Opt. Express 18, 8647–8659 (2010).
[CrossRef] [PubMed]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086–15092 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17, 2646–2657 (2009).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express 16, 16423–16430(2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Spectrosc. (1)

A. I. Konyukhov, E. A. Romanova, and V. S. Shiryaev, “Chalcogenide glasses as a medium for controlling ultrashort IR pulses: Part I,” Opt. Spectrosc. 110, 442–448 (2011).
[CrossRef]

Other (4)

G. Farin, Curves and Surfaces for Computer-Aided Geometric Design, 4th ed. (Elsevier, 1997).

K. Mukasa, M. N. Petrovich, F. Poletti, A. Webb, J. Hayes, A. Brakel, R. A. Correa, L. Provost, J. Sahu, P. Petropoulos, and D. J. Richardson, “Novel fabrication method of highly-nonlinear silica holey fibres,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (Optical Society of America), 2006, paper CMC5.

COMSOL Multiphysics, Version 3.2, 2005.

T. Monro, S. Afshar, H. Ebendorff-Heidepriem, W. Q. Zhang, and Y. Ruan, “Emerging optical fibers: new fiber materials and structures,” in Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper CFH2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross section of SCF (a) with maximum suspended condition, (b) at different suspended conditions.

Fig. 2
Fig. 2

Quadratic Bézier curve.

Fig. 3
Fig. 3

Formation of air holes with Bézier curves.

Fig. 4
Fig. 4

The GVD versus wavelength as a function of SF.

Fig. 5
Fig. 5

The confinement factor versus wavelength.

Fig. 6
Fig. 6

Power confinement at 1.55 μm with filling material (a) air, (b) water.

Fig. 7
Fig. 7

(a) Nonlinearity versus wavelength, (b) effective area versus wavelength.

Tables (1)

Tables Icon

Table 1 ZDWs at Different SFs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

B ( t ) = ( 1 t ) 2 P 0 + 2 ( 1 t ) t P 1 + t 2 P 2 , t [ 0 , 1 ] ,
¯ × ( ε r 1 ¯ × H ¯ ) k 0 2 H ¯ = 0 ,
n ( λ ) = 1 + λ 2 ( 2.234921 λ 2 0.24164 2 + 0.347441 λ 2 19 2 + 1.308575 λ 2 4 × 0.24164 2 )
GVD = λ c d 2 Re ( n eff ) d λ 2 .
Confinement = P core P total × 100 % .
γ = 2 π λ n 2 ( x , y ) | F ( x , y ) | 4 d x d y ( | F ( x , y ) | 2 d x d y ) 2 ,

Metrics