Abstract

We present an analytical model for single mode, multiply reflected, external cavity, optical fiber Fabry–Perot interferometers in the low finesse regime using simple geometry and the Gaussian beam approximation. The multiple reflection model predicts attenuation of the peak-to-peak interference as the fiber to mirror distance approaches zero, as well as fringe asymmetry in the presence of nonabsorbing mirrors. A series of experiments are conducted in which a series of fiber Fabry–Perot cavities are constructed using uncoated, single mode glass fibers, and mirrors of varying reflectivity. The cavity length is swept, and the predictions of the model are found to be in good agreement with the experimental interferograms.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing

Thomas Taimre, Milan Nikolić, Karl Bertling, Yah Leng Lim, Thierry Bosch, and Aleksandar D. Rakić
Adv. Opt. Photon. 7(3) 570-631 (2015)

Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival

Al-Hafeez Dhalla, Derek Nankivil, and Joseph A. Izatt
Biomed. Opt. Express 3(3) 633-649 (2012)

The Spherical Mirror Fabry-Perot Interferometer

Michael Hercher
Appl. Opt. 7(5) 951-966 (1968)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription