Abstract

Correlation interferometry is a particular application of Fourier transform spectroscopy with partially scanned interferograms. Basically, it is a technique to obtain the difference between the spectra of atmospheric radiance at two diverse spectral resolutions. Although the technique could be exploited to design an appropriate correlation interferometer, in this paper we are concerned with the analytical aspects of the method and its application to high-spectral-resolution infrared observations in order to separate the emission of a given atmospheric gas from a spectral signal dominated by surface emission, such as in the case of satellite spectrometers operated in the nadir looking mode. The tool will be used to address some basic questions concerning the vertical spatial resolution of H2O and to develop an algorithm to retrieve the columnar amount of CO2. An application to complete interferograms from the Infrared Atmospheric Sounding Interferometer will be presented and discussed. For H2O, we have concluded that the vertical spatial resolution in the lower troposphere mostly depends on broad features associated with the spectrum, whereas for CO2, we have derived a technique capable of retrieving a CO2 columnar amount with accuracy of ±7parts per million by volume at the level of each single field of view.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Kyle, “Temperature soundings with partially scanned interferograms,” Appl. Opt. 16, 326–332 (1977).
    [CrossRef] [PubMed]
  2. H. W. Goldstein, R. N. Grenda, M. H. Bortner, and R. Dick, “CIMATS: a correlation interferometer for the measurements of atmospheric trace species,” in Proceedings of the 4th Joint Conference on Sensing of Environmental Pollutants (American Chemical Society, 1978), pp. 586–589.
  3. W. L. Smith, H. B. Howell, and H. M. Woolf, “The use of interferometric radiance measurements for sounding the atmosphere,” J. Atmos. Sci. 36, 566–575 (1979).
    [CrossRef]
  4. G. Grieco, G. Masiello, and C. Serio, “Interferometric vs spectral IASI radiances: Effective data-reduction approaches for the satellite sounding of atmospheric thermodynamical parameters,” Int. J. Remote Sens. 2, 2323–2346 (2010).
    [CrossRef]
  5. G. Masiello and C. Serio, “Dimensionality-reduction approach to the thermal radiative transfer equation inverse problem,” Geophys. Res. Lett. 31, L11105 (2004).
    [CrossRef]
  6. A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Environ. Model. Software 20, 1111–1126 (2005).
    [CrossRef]
  7. U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Model. Software 17, 651–667 (2002).
    [CrossRef]
  8. G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
    [CrossRef]
  9. G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009), available online at www.atmos-chem-phys.net/9/8771/2009/.
    [CrossRef]
  10. F. Chevallier, “Sampled database of 60 levels atmospheric profiles from the ECMWF analysis,” Technical report: ECMWF EUMETSAT SAF programme research report 4 (European Centre for Medium Range Weather Forecasts, 2001).
  11. Facility for Airborne Atmospheric Measurements, “Joint airborne IASI validation experiment (JAIVEX),” http://badc.nerc. ac.uk/data/jaivex/.
  12. T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
    [CrossRef] [PubMed]
  13. R. J. Engelen, S. Serrar, and F. Chevallier, “Four dimensional data assimilation of atmospheric CO2 using AIRS observations,” J. Geophys. Res. 114, D03303 (2009).
    [CrossRef]
  14. G. Masiello, M. Matricardi, and C. Serio, “The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere,” Atmos. Chem. Phys. 11, 1009–1021 (2011).
    [CrossRef]
  15. L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).
  16. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).
  17. U. Amato, D. De Canditiis, and C. Serio, “Effect of apodization on the retrieval of geophysical parameters from Fourier-transform spectrometers,” Appl. Opt. 37, 6537–6543(1998).
    [CrossRef]
  18. E. A. Robinson and M. T. Silvia, Digital Foundation of Time Series Analysis: Wave-Equation Space-Time Processing, Vol.  2 (Holden-Day, 1981).
  19. H. M. Pichett and H. L. Strauss, “Signal-to-noise ratio in Fourier spectrometry,” Anal. Chem. 44, 265–270 (1972).
    [CrossRef]
  20. G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. R. Astron. Soc. 16, 169–205 (1968).
    [CrossRef]
  21. C. D. Rodgers, Inverse Methods for Atmospheric Sounding Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, Vol.  2 (World Scientific, 2000).
    [CrossRef]
  22. K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329(1988).
    [CrossRef]
  23. A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
    [CrossRef]
  24. G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectrosc. Radiat. Transfer 77, 131–148 (2003).
    [CrossRef]

2011 (1)

G. Masiello, M. Matricardi, and C. Serio, “The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere,” Atmos. Chem. Phys. 11, 1009–1021 (2011).
[CrossRef]

2010 (2)

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

G. Grieco, G. Masiello, and C. Serio, “Interferometric vs spectral IASI radiances: Effective data-reduction approaches for the satellite sounding of atmospheric thermodynamical parameters,” Int. J. Remote Sens. 2, 2323–2346 (2010).
[CrossRef]

2009 (2)

G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009), available online at www.atmos-chem-phys.net/9/8771/2009/.
[CrossRef]

R. J. Engelen, S. Serrar, and F. Chevallier, “Four dimensional data assimilation of atmospheric CO2 using AIRS observations,” J. Geophys. Res. 114, D03303 (2009).
[CrossRef]

2007 (1)

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

2005 (1)

A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Environ. Model. Software 20, 1111–1126 (2005).
[CrossRef]

2004 (2)

G. Masiello and C. Serio, “Dimensionality-reduction approach to the thermal radiative transfer equation inverse problem,” Geophys. Res. Lett. 31, L11105 (2004).
[CrossRef]

A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
[CrossRef]

2003 (1)

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectrosc. Radiat. Transfer 77, 131–148 (2003).
[CrossRef]

2002 (1)

U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Model. Software 17, 651–667 (2002).
[CrossRef]

2001 (1)

F. Chevallier, “Sampled database of 60 levels atmospheric profiles from the ECMWF analysis,” Technical report: ECMWF EUMETSAT SAF programme research report 4 (European Centre for Medium Range Weather Forecasts, 2001).

2000 (1)

C. D. Rodgers, Inverse Methods for Atmospheric Sounding Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, Vol.  2 (World Scientific, 2000).
[CrossRef]

1998 (1)

1988 (1)

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329(1988).
[CrossRef]

1981 (1)

E. A. Robinson and M. T. Silvia, Digital Foundation of Time Series Analysis: Wave-Equation Space-Time Processing, Vol.  2 (Holden-Day, 1981).

1979 (1)

W. L. Smith, H. B. Howell, and H. M. Woolf, “The use of interferometric radiance measurements for sounding the atmosphere,” J. Atmos. Sci. 36, 566–575 (1979).
[CrossRef]

1978 (1)

H. W. Goldstein, R. N. Grenda, M. H. Bortner, and R. Dick, “CIMATS: a correlation interferometer for the measurements of atmospheric trace species,” in Proceedings of the 4th Joint Conference on Sensing of Environmental Pollutants (American Chemical Society, 1978), pp. 586–589.

1977 (1)

1972 (2)

H. M. Pichett and H. L. Strauss, “Signal-to-noise ratio in Fourier spectrometry,” Anal. Chem. 44, 265–270 (1972).
[CrossRef]

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).

1968 (1)

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. R. Astron. Soc. 16, 169–205 (1968).
[CrossRef]

Amato, U.

U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Model. Software 17, 651–667 (2002).
[CrossRef]

U. Amato, D. De Canditiis, and C. Serio, “Effect of apodization on the retrieval of geophysical parameters from Fourier-transform spectrometers,” Appl. Opt. 37, 6537–6543(1998).
[CrossRef]

Backus, G.

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. R. Astron. Soc. 16, 169–205 (1968).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).

Bortner, M. H.

H. W. Goldstein, R. N. Grenda, M. H. Bortner, and R. Dick, “CIMATS: a correlation interferometer for the measurements of atmospheric trace species,” in Proceedings of the 4th Joint Conference on Sensing of Environmental Pollutants (American Chemical Society, 1978), pp. 586–589.

Carissimo, A.

G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009), available online at www.atmos-chem-phys.net/9/8771/2009/.
[CrossRef]

A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Environ. Model. Software 20, 1111–1126 (2005).
[CrossRef]

Chevallier, F.

R. J. Engelen, S. Serrar, and F. Chevallier, “Four dimensional data assimilation of atmospheric CO2 using AIRS observations,” J. Geophys. Res. 114, D03303 (2009).
[CrossRef]

F. Chevallier, “Sampled database of 60 levels atmospheric profiles from the ECMWF analysis,” Technical report: ECMWF EUMETSAT SAF programme research report 4 (European Centre for Medium Range Weather Forecasts, 2001).

Cuomo, V.

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
[CrossRef]

De Canditiis, D.

De Feis, I.

A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Environ. Model. Software 20, 1111–1126 (2005).
[CrossRef]

Dick, R.

H. W. Goldstein, R. N. Grenda, M. H. Bortner, and R. Dick, “CIMATS: a correlation interferometer for the measurements of atmospheric trace species,” in Proceedings of the 4th Joint Conference on Sensing of Environmental Pollutants (American Chemical Society, 1978), pp. 586–589.

Engelen, R. J.

R. J. Engelen, S. Serrar, and F. Chevallier, “Four dimensional data assimilation of atmospheric CO2 using AIRS observations,” J. Geophys. Res. 114, D03303 (2009).
[CrossRef]

Fourrié, N.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Gambacorta, A.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Garcelon, S.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Gardiner, T.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Gilbert, F.

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. R. Astron. Soc. 16, 169–205 (1968).
[CrossRef]

Goldstein, H. W.

H. W. Goldstein, R. N. Grenda, M. H. Bortner, and R. Dick, “CIMATS: a correlation interferometer for the measurements of atmospheric trace species,” in Proceedings of the 4th Joint Conference on Sensing of Environmental Pollutants (American Chemical Society, 1978), pp. 586–589.

Grenda, R. N.

H. W. Goldstein, R. N. Grenda, M. H. Bortner, and R. Dick, “CIMATS: a correlation interferometer for the measurements of atmospheric trace species,” in Proceedings of the 4th Joint Conference on Sensing of Environmental Pollutants (American Chemical Society, 1978), pp. 586–589.

Grieco, G.

G. Grieco, G. Masiello, and C. Serio, “Interferometric vs spectral IASI radiances: Effective data-reduction approaches for the satellite sounding of atmospheric thermodynamical parameters,” Int. J. Remote Sens. 2, 2323–2346 (2010).
[CrossRef]

G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009), available online at www.atmos-chem-phys.net/9/8771/2009/.
[CrossRef]

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Hansford, G. M.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Heilliette, S.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Hilton, F. I.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Howell, H. B.

W. L. Smith, H. B. Howell, and H. M. Woolf, “The use of interferometric radiance measurements for sounding the atmosphere,” J. Atmos. Sci. 36, 566–575 (1979).
[CrossRef]

Jones, R. L.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Kim, M.-J.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Kyle, T. G.

Lavanant, L.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Lubrano, A. M.

A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
[CrossRef]

Masiello, G.

G. Masiello, M. Matricardi, and C. Serio, “The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere,” Atmos. Chem. Phys. 11, 1009–1021 (2011).
[CrossRef]

G. Grieco, G. Masiello, and C. Serio, “Interferometric vs spectral IASI radiances: Effective data-reduction approaches for the satellite sounding of atmospheric thermodynamical parameters,” Int. J. Remote Sens. 2, 2323–2346 (2010).
[CrossRef]

G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009), available online at www.atmos-chem-phys.net/9/8771/2009/.
[CrossRef]

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
[CrossRef]

G. Masiello and C. Serio, “Dimensionality-reduction approach to the thermal radiative transfer equation inverse problem,” Geophys. Res. Lett. 31, L11105 (2004).
[CrossRef]

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectrosc. Radiat. Transfer 77, 131–148 (2003).
[CrossRef]

U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Model. Software 17, 651–667 (2002).
[CrossRef]

Masuda, K.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329(1988).
[CrossRef]

Matricardi, M.

G. Masiello, M. Matricardi, and C. Serio, “The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere,” Atmos. Chem. Phys. 11, 1009–1021 (2011).
[CrossRef]

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

Matricradi, M.

A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
[CrossRef]

McNally, A. P.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Mead, M. I.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Nishihata, H.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Pavelin, E. G.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Pichett, H. M.

H. M. Pichett and H. L. Strauss, “Signal-to-noise ratio in Fourier spectrometry,” Anal. Chem. 44, 265–270 (1972).
[CrossRef]

Rabier, F.

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

Robinson, E. A.

E. A. Robinson and M. T. Silvia, Digital Foundation of Time Series Analysis: Wave-Equation Space-Time Processing, Vol.  2 (Holden-Day, 1981).

Robinson, R.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Rodgers, C. D.

C. D. Rodgers, Inverse Methods for Atmospheric Sounding Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, Vol.  2 (World Scientific, 2000).
[CrossRef]

Serio, C.

G. Masiello, M. Matricardi, and C. Serio, “The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere,” Atmos. Chem. Phys. 11, 1009–1021 (2011).
[CrossRef]

G. Grieco, G. Masiello, and C. Serio, “Interferometric vs spectral IASI radiances: Effective data-reduction approaches for the satellite sounding of atmospheric thermodynamical parameters,” Int. J. Remote Sens. 2, 2323–2346 (2010).
[CrossRef]

G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009), available online at www.atmos-chem-phys.net/9/8771/2009/.
[CrossRef]

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Environ. Model. Software 20, 1111–1126 (2005).
[CrossRef]

A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
[CrossRef]

G. Masiello and C. Serio, “Dimensionality-reduction approach to the thermal radiative transfer equation inverse problem,” Geophys. Res. Lett. 31, L11105 (2004).
[CrossRef]

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectrosc. Radiat. Transfer 77, 131–148 (2003).
[CrossRef]

U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Model. Software 17, 651–667 (2002).
[CrossRef]

U. Amato, D. De Canditiis, and C. Serio, “Effect of apodization on the retrieval of geophysical parameters from Fourier-transform spectrometers,” Appl. Opt. 37, 6537–6543(1998).
[CrossRef]

Serrar, S.

R. J. Engelen, S. Serrar, and F. Chevallier, “Four dimensional data assimilation of atmospheric CO2 using AIRS observations,” J. Geophys. Res. 114, D03303 (2009).
[CrossRef]

Shimoda, H.

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectrosc. Radiat. Transfer 77, 131–148 (2003).
[CrossRef]

Silvia, M. T.

E. A. Robinson and M. T. Silvia, Digital Foundation of Time Series Analysis: Wave-Equation Space-Time Processing, Vol.  2 (Holden-Day, 1981).

Smith, W. L.

W. L. Smith, H. B. Howell, and H. M. Woolf, “The use of interferometric radiance measurements for sounding the atmosphere,” J. Atmos. Sci. 36, 566–575 (1979).
[CrossRef]

Strauss, H. L.

H. M. Pichett and H. L. Strauss, “Signal-to-noise ratio in Fourier spectrometry,” Anal. Chem. 44, 265–270 (1972).
[CrossRef]

Summa, D.

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

Swann, N.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Takashima, T.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329(1988).
[CrossRef]

Takayama, Y.

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329(1988).
[CrossRef]

Viggiano, M.

U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Model. Software 17, 651–667 (2002).
[CrossRef]

Woods, P. T.

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Woolf, H. M.

W. L. Smith, H. B. Howell, and H. M. Woolf, “The use of interferometric radiance measurements for sounding the atmosphere,” J. Atmos. Sci. 36, 566–575 (1979).
[CrossRef]

Anal. Chem. (1)

H. M. Pichett and H. L. Strauss, “Signal-to-noise ratio in Fourier spectrometry,” Anal. Chem. 44, 265–270 (1972).
[CrossRef]

Appl. Opt. (2)

Atmos. Chem. Phys. (2)

G. Masiello, M. Matricardi, and C. Serio, “The use of IASI data to identify systematic errors in the ECMWF forecasts of temperature in the upper stratosphere,” Atmos. Chem. Phys. 11, 1009–1021 (2011).
[CrossRef]

G. Masiello, C. Serio, A. Carissimo, and G. Grieco, “Application of ϕ-IASI to IASI: retrieval products evaluation and radiative transfer consistency,” Atmos. Chem. Phys. 9, 8771–8783 (2009), available online at www.atmos-chem-phys.net/9/8771/2009/.
[CrossRef]

Environ. Model. Software (2)

A. Carissimo, I. De Feis, and C. Serio, “The physical retrieval methodology for IASI: the δ-IASI code,” Environ. Model. Software 20, 1111–1126 (2005).
[CrossRef]

U. Amato, G. Masiello, C. Serio, and M. Viggiano, “The σ-IASI code for the calculation of infrared atmospheric radiance and its derivatives,” Environ. Model. Software 17, 651–667 (2002).
[CrossRef]

Geophys. J. R. Astron. Soc. (1)

G. Backus and F. Gilbert, “The resolving power of gross Earth data,” Geophys. J. R. Astron. Soc. 16, 169–205 (1968).
[CrossRef]

Geophys. Res. Lett. (1)

G. Masiello and C. Serio, “Dimensionality-reduction approach to the thermal radiative transfer equation inverse problem,” Geophys. Res. Lett. 31, L11105 (2004).
[CrossRef]

Int. J. Remote Sens. (1)

G. Grieco, G. Masiello, and C. Serio, “Interferometric vs spectral IASI radiances: Effective data-reduction approaches for the satellite sounding of atmospheric thermodynamical parameters,” Int. J. Remote Sens. 2, 2323–2346 (2010).
[CrossRef]

J. Atmos. Sci. (1)

W. L. Smith, H. B. Howell, and H. M. Woolf, “The use of interferometric radiance measurements for sounding the atmosphere,” J. Atmos. Sci. 36, 566–575 (1979).
[CrossRef]

J. Geophys. Res. (1)

R. J. Engelen, S. Serrar, and F. Chevallier, “Four dimensional data assimilation of atmospheric CO2 using AIRS observations,” J. Geophys. Res. 114, D03303 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

G. Masiello, C. Serio, and H. Shimoda, “Qualifying IMG tropical spectra for clear sky,” J. Quant. Spectrosc. Radiat. Transfer 77, 131–148 (2003).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

G. Grieco, G. Masiello, M. Matricardi, C. Serio, D. Summa, and V. Cuomo, “Demonstration and validation of the φ-IASI inversion scheme with NAST-I data,” Q. J. R. Meteorol. Soc. 133, 217–232 (2007), available online at http://onlinelibrary.wiley.com/doi/10.1002/qj.162/pdf.
[CrossRef]

Remote Sens. Environ. (1)

K. Masuda, T. Takashima, and Y. Takayama, “Emissivity of pure and sea waters for the model sea surface in the infrared window regions,” Remote Sens. Environ. 24, 313–329(1988).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Gardiner, M. I. Mead, S. Garcelon, R. Robinson, N. Swann, G. M. Hansford, P. T. Woods, and R. L. Jones, “A lightweight near-infrared spectrometer for the detection of trace atmospheric species,” Rev. Sci. Instrum. 81, 083102 (2010).
[CrossRef] [PubMed]

Tellus B (1)

A. M. Lubrano, G. Masiello, M. Matricradi, C. Serio, and V. Cuomo, “Retrieving N2O from nadir-viewing infrared spectrometers,” Tellus B 56, 249–261 (2004).
[CrossRef]

Other (7)

C. D. Rodgers, Inverse Methods for Atmospheric Sounding Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, Vol.  2 (World Scientific, 2000).
[CrossRef]

L. Lavanant, N. Fourrié, A. Gambacorta, G. Grieco, S. Heilliette, F. I. Hilton, M.-J. Kim, A. P. McNally, H. Nishihata, E. G. Pavelin, and F. Rabier, “Comparison of cloud products within IASI footprints for the assimilation of cloudy radiances,” Q. J. R. Meteorol. Soc. (to be published).

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic, 1972).

E. A. Robinson and M. T. Silvia, Digital Foundation of Time Series Analysis: Wave-Equation Space-Time Processing, Vol.  2 (Holden-Day, 1981).

F. Chevallier, “Sampled database of 60 levels atmospheric profiles from the ECMWF analysis,” Technical report: ECMWF EUMETSAT SAF programme research report 4 (European Centre for Medium Range Weather Forecasts, 2001).

Facility for Airborne Atmospheric Measurements, “Joint airborne IASI validation experiment (JAIVEX),” http://badc.nerc. ac.uk/data/jaivex/.

H. W. Goldstein, R. N. Grenda, M. H. Bortner, and R. Dick, “CIMATS: a correlation interferometer for the measurements of atmospheric trace species,” in Proceedings of the 4th Joint Conference on Sensing of Environmental Pollutants (American Chemical Society, 1978), pp. 586–589.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

In situ TDLAS measurements of the CO 2 profile for the JAIVEx experiment.

Fig. 2
Fig. 2

CO 2 mixing ratio profiles derived from the ECMWF analysis and time–space collocated with the 25 JAIVEx IASI soundings.

Fig. 3
Fig. 3

Examples of couples (interferogram, spectrum) for different OPDs. Couple a), b) refers to χ = 0.0090 cm and couple c), d) refers to χ = 0.0707 cm . Couple e), f) exemplifies that the partial interferogram in the range [ χ = 0.0090 , χ = 0.0707 ] cm corresponds to the difference of the spectra d)–b).

Fig. 4
Fig. 4

a) Example of partial interferogram in the range [ χ = 0.65 , χ = 0.68 ] cm for a case of a CO 2 load equal to 0 and 385 ppmv , respectively, and b) difference spectrum d ( σ ) corresponding to the case with a CO 2 load equal to 385 ppmv .

Fig. 5
Fig. 5

Example of IASI averaging kernels for H 2 O for a tropical atmospheric model for the pressure range 1025 to 900 hPa . a) Averaging kernels computed considering the full IASI spectral coverage and channels. Panel b) is the same as a), but now the averaging kernels have been computed with a partial interferogram extending in the range of [ 0.0090 , 2 ] cm . The results have been obtained with the Masuda emissivity for the sea surface.

Fig. 6
Fig. 6

Same as Fig. 5, but now the computations have been performed considering the surface emissivity equal to 1 at each channel.

Fig. 7
Fig. 7

Example of IASI difference spectra, d ( σ ) , obtained by Fourier backtransforming the partial interferograms in the interval [ χ = 0.65 , χ = 0.68 ] cm . The two reference spectra show that the sinusoid peaks are proportional to the CO 2 columnar amount.

Fig. 8
Fig. 8

Linear dependence of CO 2 columnar amount on d ( σ ) for four channels selected in regions of weak-moderate CO 2 absorption.

Fig. 9
Fig. 9

For the four channels listed in the legend, a) shows sensitivity of r ( σ ) and b) shows sensitivity of d ( σ ) to the CO 2 mixing ratio profile.

Fig. 10
Fig. 10

Sensitivity of r ( σ ) and d ( σ ) to a) surface emissivity and b) surface temperature for the four channels at 785.25, 809.25, 976.75, and 2105 cm 1 .

Fig. 11
Fig. 11

For the four channels listed in the legend, a) shows the sensitivity of r ( σ ) and b) shows the sensitivity of d ( σ ) to the temperature profile.

Fig. 12
Fig. 12

CO 2 columnar amount for the 25 IASI spectra of the JAIVEx experiment. The figure also provides a comparison with the CO 2 columnar amount from the AIRS-based ECMWF analysis and TDLAS instrument onboard the FAAM aircraft. b) Estimation error for the IASI estimates [same symbols as in panel a)].

Fig. 13
Fig. 13

Checking the sensitivity of our CO 2 columnar amount retrieval amount to the assumed shape for the CO 2 profile (uniform or not with altitude). The exercise shown in the figures considers the 25 IASI soundings of the JAIVEx experiment. The difference in panel b) is (nonuniform)–(uniform).

Fig. 14
Fig. 14

IASI CO 2 map for portions of two orbits on 17 November 2009.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

r ( σ ) = + c ( χ ) exp ( 2 π i σ χ ) d χ ,
c ( χ ) = + r ( σ ) exp ( 2 π i σ χ ) d σ ,
r ( σ ) = + W ( χ ) c ( χ ) exp ( 2 π i σ χ ) d χ ,
W ( χ ) = { 1 for     χ χ max 0 otherwise ,
Δ σ = 1 2 χ max , Δ χ = 1 2 ( σ 2 σ 1 ) ,
M τ M IASI = χ τ χ max ,
{ Δ σ τ = ( 2 χ τ ) 1 M τ M IASI = Δ σ Δ σ τ .
W ˜ ( χ ) = { 1 for     χ τ l χ χ τ u 0 otherwise .
W ˜ ( χ ) = W ( χ ) τ u W ( χ ) τ l ,
d ( σ ) = r χ τ u ( σ ) r χ τ l ( σ ) ,
2 χ τ u sin ( 2 π σ χ τ u ) 2 π σ χ τ u 2 χ τ l sin ( 2 π σ χ τ l ) 2 π σ χ τ l .
ε Δ ( σ ) = ε ( σ ) χ τ 2 χ τ 1 χ max ,
ϵ ( σ ) B ( T g ) τ o ,
q CO 2 = f ( d ( σ ) )
q CO 2 = f ( d ( σ ) ) a × d ( σ ) + b .
var ( q CO 2 ) = a 2 var ( d ( σ ) ) ,
q ¯ = i = 1 4 w i q i ,
w i = C q 1 ( i , i ) i = 1 4 C q 1 ( i , i ) ,
var ( q ¯ ) = i = 1 4 j = 1 4 w i w j C q ( i , j ) .
S X , Δ = ( 1 ε Δ ( σ ) d ( σ ) X ) ,
S X = ( 1 ε ( σ ) r ( σ ) X ) .
Δ ( d ( σ ) ) ε Δ ( σ ) = S T , Δ Δ T ,
Δ ( r ( σ ) ) ε ( σ ) = S T Δ T ,
q CO 2 = p i p u S CO 2 , Δ q ( p ) d p p i p u S CO 2 , Δ d p ,
q s ( p ) = q CO 2 × q ecmwf ( p ) p i p u q ecmwf ( p ) d p .

Metrics