Abstract

This erratum reports a correction in Eq. (1) of our previous paper [Appl. Opt. 49, 6840 (2010)].

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Chauhan, J. Cohen, and R. Trebino, “Simple dispersion law for arbitrary sequences of dispersive optics,” Appl. Opt. 49, 6840–6844 (2010).
    [CrossRef] [PubMed]
  2. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  3. F. J. Duarte and J. A. Piper, “Dispersion theory of multiple prism beam expanders for pulsed dye lasers,” Opt. Commun. 43, 303–307 (1982).
    [CrossRef]

2010 (1)

1999 (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

1982 (1)

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple prism beam expanders for pulsed dye lasers,” Opt. Commun. 43, 303–307 (1982).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Chauhan, V.

Cohen, J.

Duarte, F. J.

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple prism beam expanders for pulsed dye lasers,” Opt. Commun. 43, 303–307 (1982).
[CrossRef]

Piper, J. A.

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple prism beam expanders for pulsed dye lasers,” Opt. Commun. 43, 303–307 (1982).
[CrossRef]

Trebino, R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Appl. Opt. (1)

Opt. Commun. (1)

F. J. Duarte and J. A. Piper, “Dispersion theory of multiple prism beam expanders for pulsed dye lasers,” Opt. Commun. 43, 303–307 (1982).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = [ d n d λ sin ϕ cos ϕ / cos γ cos β ] + d n d λ sin β cos γ ,

Metrics