Abstract

We present the development and implementation of a spatially and spectrally resolved multipoint fluorescence correlation spectroscopy (FCS) system utilizing multiple end-capped optical fibers and an inexpensive laser source. Specially prepared end-capped optical fibers placed in an image plane were used to both collect fluorescence signals from the sample and to deliver signals to the detectors. The placement of independently selected optical fibers on the image plane was done by monitoring the end-capped fiber tips at the focus using a CCD, and fluorescence from specific positions of a sample were collected by an end-capped fiber, which could accurately represent light intensities or spectral data without incurring any disturbance. A fast multipoint spectroscopy system with a time resolution of 1.5ms was then implemented using a prism and an electron multiplying charge coupled device with a pixel binning for the region of interest. The accuracy of our proposed system was subsequently confirmed by experimental results, based on an FCS analysis of microspheres in distilled water. We expect that the proposed multipoint site-specific fluorescence measurement system can be used as an inexpensive fluorescence measurement tool to study many intracellular and molecular dynamics in cell biology.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Iftimia, X. Gu, Y. Xu, and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum. 74, 2836–2842 (2003).
    [CrossRef]
  2. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
    [CrossRef]
  3. T. Dabbs and M. Glass, “Single-mode fibers used as confocal microscope pinholes,” Appl. Opt. 31, 705–706 (1992).
    [CrossRef] [PubMed]
  4. Y.-C. Chang, J. Y. Ye, T. Thomas, Y. Chen, J. R. Baker, and T. B. Norris, “Two-photon fluorescence correlation spectroscopy through a dual-clad optical fiber,” Opt. Express 16, 12640–12649 (2008).
    [CrossRef] [PubMed]
  5. F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87, 737–745 (2002).
    [CrossRef] [PubMed]
  6. D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).
    [CrossRef] [PubMed]
  7. Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
    [CrossRef] [PubMed]
  8. K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45, 7538–7542(2006).
    [CrossRef] [PubMed]
  9. H. Blom, M. Johansson, A. S. Hedman, L. Lundberg, A. Hanning, S. Hard, and R. Rigler, “Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2×2 fan-out element,” Appl. Opt. 41, 3336–3342 (2002).
    [CrossRef] [PubMed]
  10. A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
    [CrossRef] [PubMed]
  11. M. Burkhardt and P. Schwille, “Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14, 5013–5020 (2006).
    [CrossRef] [PubMed]
  12. D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
    [CrossRef] [PubMed]
  13. F. Bestvater, Z. Seghiri, M. S. Kang, N. Gröner, J. Y. Lee, K. B. Im, and M. Wachsmuth, “EMCCD-based spectrally resolved fluorescence correlation spectroscopy,” Opt. Express 18, 23818–23828 (2010).
    [CrossRef] [PubMed]
  14. R. Rigler and E. S. Elson, Fluorescence Correlation Spectroscopy—Theory and Applications (Springer, 2001).
    [CrossRef]
  15. P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy, an introduction to its concepts and applications,” in Biophysics Textbook Online (Biophysical Society, 2001), pp. 1–33.
  16. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
    [CrossRef]
  17. D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
    [CrossRef]
  18. R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
    [CrossRef]
  19. E. L. Elson and H. Qian, “Interpretation of fluorescence correlation spectroscopy and photobleaching recovery in terms of molecular interactions,” in Methods Cell Biology (Academic, 1989), Vol.  30, pp. 307–332.
    [CrossRef]
  20. S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791–1803 (1976).
    [CrossRef]
  21. P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
    [CrossRef] [PubMed]
  22. T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80, 1575–1584 (2001).
    [CrossRef] [PubMed]
  23. E. F. Hom and A. S. Verkman, “Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer,” Biophys. J. 83, 533–545 (2002).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[CrossRef] [PubMed]

2008 (1)

2006 (3)

2005 (1)

Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

2003 (1)

N. Iftimia, X. Gu, Y. Xu, and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum. 74, 2836–2842 (2003).
[CrossRef]

2002 (4)

H. Blom, M. Johansson, A. S. Hedman, L. Lundberg, A. Hanning, S. Hard, and R. Rigler, “Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2×2 fan-out element,” Appl. Opt. 41, 3336–3342 (2002).
[CrossRef] [PubMed]

F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87, 737–745 (2002).
[CrossRef] [PubMed]

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

E. F. Hom and A. S. Verkman, “Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer,” Biophys. J. 83, 533–545 (2002).
[CrossRef] [PubMed]

2001 (3)

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80, 1575–1584 (2001).
[CrossRef] [PubMed]

R. Rigler and E. S. Elson, Fluorescence Correlation Spectroscopy—Theory and Applications (Springer, 2001).
[CrossRef]

P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy, an introduction to its concepts and applications,” in Biophysics Textbook Online (Biophysical Society, 2001), pp. 1–33.

1994 (1)

D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).
[CrossRef] [PubMed]

1993 (1)

R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
[CrossRef]

1992 (1)

1989 (1)

E. L. Elson and H. Qian, “Interpretation of fluorescence correlation spectroscopy and photobleaching recovery in terms of molecular interactions,” in Methods Cell Biology (Academic, 1989), Vol.  30, pp. 307–332.
[CrossRef]

1987 (1)

P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
[CrossRef] [PubMed]

1976 (1)

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791–1803 (1976).
[CrossRef]

1972 (1)

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Anhut, T.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

Aragon, S. R.

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791–1803 (1976).
[CrossRef]

Baker, J. R.

Besse, P. A.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

Bestvater, F.

Blom, H.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

H. Blom, M. Johansson, A. S. Hedman, L. Lundberg, A. Hanning, S. Hard, and R. Rigler, “Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2×2 fan-out element,” Appl. Opt. 41, 3336–3342 (2002).
[CrossRef] [PubMed]

Bonnet, G.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Burkhardt, M.

Carson, J. H.

D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).
[CrossRef] [PubMed]

Chang, Y.-C.

Chen, Y.

Cowan, A. E.

D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).
[CrossRef] [PubMed]

Dabbs, T.

Elson, E.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Elson, E. L.

E. L. Elson and H. Qian, “Interpretation of fluorescence correlation spectroscopy and photobleaching recovery in terms of molecular interactions,” in Methods Cell Biology (Academic, 1989), Vol.  30, pp. 307–332.
[CrossRef]

Elson, E. S.

R. Rigler and E. S. Elson, Fluorescence Correlation Spectroscopy—Theory and Applications (Springer, 2001).
[CrossRef]

Garai, K.

Glass, M.

Gosch, A.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

Gröner, N.

Gu, X.

N. Iftimia, X. Gu, Y. Xu, and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum. 74, 2836–2842 (2003).
[CrossRef]

Hanning, A.

Hard, S.

Haustein, E.

P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy, an introduction to its concepts and applications,” in Biophysics Textbook Online (Biophysical Society, 2001), pp. 1–33.

Hedman, A. S.

Helmchen, F.

F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87, 737–745 (2002).
[CrossRef] [PubMed]

Hom, E. F.

E. F. Hom and A. S. Verkman, “Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer,” Biophys. J. 83, 533–545 (2002).
[CrossRef] [PubMed]

Iftimia, N.

N. Iftimia, X. Gu, Y. Xu, and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum. 74, 2836–2842 (2003).
[CrossRef]

Im, K. B.

Ishibashi, K.

Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
[CrossRef] [PubMed]

Jiang, H.

N. Iftimia, X. Gu, Y. Xu, and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum. 74, 2836–2842 (2003).
[CrossRef]

Johansson, M.

Kang, M. S.

Kask, P.

R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
[CrossRef]

P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
[CrossRef] [PubMed]

Kinjo, M.

Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
[CrossRef] [PubMed]

Koppel, D. E.

D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).
[CrossRef] [PubMed]

Krichevsky, O.

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Lasser, T.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

Lee, J. Y.

Lippmaa, E.

P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
[CrossRef] [PubMed]

Lundberg, L.

Magde, D.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Maiti, S.

Mets, U.

R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
[CrossRef]

P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
[CrossRef] [PubMed]

Mikuni, S.

Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
[CrossRef] [PubMed]

Mitchison, T. J.

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[CrossRef] [PubMed]

Morgan, F.

D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).
[CrossRef] [PubMed]

Muralidhar, M.

Needleman, D. J.

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[CrossRef] [PubMed]

Norris, T. B.

Pawley, J. B.

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
[CrossRef]

Pecora, R.

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791–1803 (1976).
[CrossRef]

Piksarv, P.

P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
[CrossRef] [PubMed]

Pooga, M.

P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
[CrossRef] [PubMed]

Popovic, R. S.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

Qian, H.

E. L. Elson and H. Qian, “Interpretation of fluorescence correlation spectroscopy and photobleaching recovery in terms of molecular interactions,” in Methods Cell Biology (Academic, 1989), Vol.  30, pp. 307–332.
[CrossRef]

Rigler, R.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

H. Blom, M. Johansson, A. S. Hedman, L. Lundberg, A. Hanning, S. Hard, and R. Rigler, “Parallel fluorescence detection of single biomolecules in microarrays by a diffractive-optical-designed 2×2 fan-out element,” Appl. Opt. 41, 3336–3342 (2002).
[CrossRef] [PubMed]

R. Rigler and E. S. Elson, Fluorescence Correlation Spectroscopy—Theory and Applications (Springer, 2001).
[CrossRef]

R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
[CrossRef]

Rochas, A.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

Sawada, R.

Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
[CrossRef] [PubMed]

Schwille, P.

M. Burkhardt and P. Schwille, “Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14, 5013–5020 (2006).
[CrossRef] [PubMed]

P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy, an introduction to its concepts and applications,” in Biophysics Textbook Online (Biophysical Society, 2001), pp. 1–33.

Seghiri, Z.

Serov, A.

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

Starr, T. E.

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80, 1575–1584 (2001).
[CrossRef] [PubMed]

Takahashi, Y.

Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
[CrossRef] [PubMed]

Thomas, T.

Thompson, N. L.

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80, 1575–1584 (2001).
[CrossRef] [PubMed]

Verkman, A. S.

E. F. Hom and A. S. Verkman, “Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer,” Biophys. J. 83, 533–545 (2002).
[CrossRef] [PubMed]

Wachsmuth, M.

Webb, W. W.

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Widengren, J.

R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
[CrossRef]

Xu, Y.

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[CrossRef] [PubMed]

N. Iftimia, X. Gu, Y. Xu, and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum. 74, 2836–2842 (2003).
[CrossRef]

Ye, J. Y.

Appl. Opt. (3)

Biophys. J. (4)

D. J. Needleman, Y. Xu, and T. J. Mitchison, “Pin-hole array correlation imaging: highly parallel fluorescence correlation spectroscopy,” Biophys. J. 96, 5050–5059 (2009).
[CrossRef] [PubMed]

D. E. Koppel, F. Morgan, A. E. Cowan, and J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).
[CrossRef] [PubMed]

T. E. Starr and N. L. Thompson, “Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion,” Biophys. J. 80, 1575–1584 (2001).
[CrossRef] [PubMed]

E. F. Hom and A. S. Verkman, “Analysis of coupled bimolecular reaction kinetics and diffusion by two-color fluorescence correlation spectroscopy: enhanced resolution of kinetics by resonance energy transfer,” Biophys. J. 83, 533–545 (2002).
[CrossRef] [PubMed]

Current Pharmaceutical Biotechnology (1)

Y. Takahashi, R. Sawada, K. Ishibashi, S. Mikuni, and M. Kinjo, “Analysis of cellular functions by multipoint fluorescence correlation spectroscopy,” Current Pharmaceutical Biotechnology 6, 159–165 (2005).
[CrossRef] [PubMed]

Eur. Biophys. J. (2)

P. Kask, P. Piksarv, U. Mets, M. Pooga, and E. Lippmaa, “Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B,” Eur. Biophys. J. 14, 257–261 (1987).
[CrossRef] [PubMed]

R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
[CrossRef]

Exp. Physiol. (1)

F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87, 737–745 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

A. Gosch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P. A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2×2 CMOS detector array,” J. Biomed. Opt. 9, 913–921 (2004).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

S. R. Aragon and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64, 1791–1803 (1976).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

D. Magde, E. Elson, and W. W. Webb, “Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972).
[CrossRef]

Rep. Prog. Phys. (1)

O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65, 251–297 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

N. Iftimia, X. Gu, Y. Xu, and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instrum. 74, 2836–2842 (2003).
[CrossRef]

Other (4)

J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006).
[CrossRef]

R. Rigler and E. S. Elson, Fluorescence Correlation Spectroscopy—Theory and Applications (Springer, 2001).
[CrossRef]

P. Schwille and E. Haustein, “Fluorescence correlation spectroscopy, an introduction to its concepts and applications,” in Biophysics Textbook Online (Biophysical Society, 2001), pp. 1–33.

E. L. Elson and H. Qian, “Interpretation of fluorescence correlation spectroscopy and photobleaching recovery in terms of molecular interactions,” in Methods Cell Biology (Academic, 1989), Vol.  30, pp. 307–332.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Procedure for making end-capped fibers and images.

Fig. 2
Fig. 2

Measured PSF of the fiber probe. A fixed 200 nm fluorescence microsphere with a PZT step of 100 nm (black dot) and its fitted data (curve).

Fig. 3
Fig. 3

Schematic of the experimental setup. Fiber probes are mounted using a medical needle and a x y z stage. In the prism spectrometer unit, fibers are spaced about 250 μm apart.

Fig. 4
Fig. 4

Wide-field fluorescence image by the CCD in distilled water of 0.2 μm microspheres. The tip can move throughout the image plane and is used to confirm the position of the end-capped fiber probe.

Fig. 5
Fig. 5

Time-dependent fluorescence fluctuation of 0.5 μm diameter microspheres in each channel, collected from two end-capped fibers; (top) channel 1, and (bottom) channel 2.

Fig. 6
Fig. 6

Normalized autocorrelation function of each channel and their fitted results. Autocorrelation function data are represented by dark squares, whereas the functions of best fit are shown by the solid curve for (top) channel 1 and (bottom) channel 2.

Fig. 7
Fig. 7

Integrated time series spectrum of source and fluorescence. The 468 672 nm spectrum and 90,000 ( 138 s ) time series images were recorded.

Fig. 8
Fig. 8

(Left) Time-dependent fluctuation of source and fluorescence (plotted on bottom), and fluorescence (plotted on top). Inset, enlarged view of portion outlined by the black dotted circle. (Right) Compensated fluorescence fluctuation with normalized portion of source fluctuation.

Fig. 9
Fig. 9

FCS curve before (circle) and after (×) compensation and their fitted results (lines).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G ( τ ) = δ I ( t ) · δ I ( t + τ ) I ( t ) 2 .
G ( τ ) = 1 N ( 1 + t τ d ) 1 ( 1 + S 2 · t τ d ) 1 2 ,
D = ω 0 2 4 τ d ,
D = k T 6 π η r ,

Metrics