Abstract

The technique of oblique angle deposition has been extended to the fabrication of nanostructured metal coatings on the tips of standard silica optical fibers by thermal evaporation. The coatings are initiated as metal island films, which grow into extended rodlike structures as the deposition continues. The nanorod coatings demonstrate excellent surface-enhanced Raman scattering performance with variability of less than 10% as shown by direct measurements off the fiber tip with thiophenol as a test analyte. However, in the remote sensing configuration, the nanorod structures perform no better than thin metal island films. This appears to be mainly due to reduced transmission when nanorod lengths exceed 100nm. Moreover, the variability of remote measurements is increased to 18%. This is believed to be due to variations in coupling efficiency.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
    [CrossRef]
  2. J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009).
    [CrossRef]
  3. C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005).
    [CrossRef]
  4. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
    [CrossRef]
  5. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271(2002).
    [CrossRef]
  6. M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
    [CrossRef]
  7. D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
    [CrossRef] [PubMed]
  8. D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
    [CrossRef]
  9. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. K. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337(2009).
    [CrossRef] [PubMed]
  10. P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394, 1761–1774 (2009).
    [CrossRef] [PubMed]
  11. D. L. Stokes, Z. H. Chi, and T. Vo-Dinh, “Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis,” Appl. Spectrosc. 58, 292–298 (2004).
    [CrossRef] [PubMed]
  12. J. M. Bello and T. Vo-Dinh, “Surface-enhanced Raman-scattering fiberoptic sensor,” Appl. Spectrosc. 44, 63–69(1990).
    [CrossRef]
  13. D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28–36 (2000).
    [CrossRef]
  14. D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38, 377–382 (2007).
    [CrossRef]
  15. V. Guieu, P. Garrigue, F. Lagugne-Labarthet, L. Servant, N. Sojic, and D. Talaga, “Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle,” Opt. Express 17, 24030–24035 (2009).
    [CrossRef]
  16. D. J. White, A. P. Mazzolini, and P. R. Stoddart, “First-approximation simulation of dopant diffusion in nanostructured silica optical fibres,” Photonics Nanostruct. 6, 167–177(2008).
    [CrossRef]
  17. E. Polwart, R. L. Keir, C. M. Davidson, W. E. Smith, and D. A. Sadler, “Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles,” Appl. Spectrosc. 54, 522–527 (2000).
    [CrossRef]
  18. M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
    [CrossRef]
  19. Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
    [CrossRef] [PubMed]
  20. Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
    [CrossRef]
  21. E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
    [CrossRef] [PubMed]
  22. G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
    [CrossRef]
  23. C. Viets and W. Hill, “Fibre-optic SERS sensors,” Internet J. Vib. Spectrosc. 4 (2000), http://www.ijvs.com.
  24. K. I. Mullen and K. T. Carron, “Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
    [CrossRef]
  25. J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008).
    [CrossRef] [PubMed]
  26. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
    [CrossRef]
  27. J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
    [CrossRef]
  28. Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
    [CrossRef]
  29. J.-G. Fan and Y.-P. Zhao, “Direct deposition of aligned nanorod array onto cylindrical objects,” J. Vac. Sci. Technol. B 23, 947–953 (2005).
    [CrossRef]
  30. J. G. Fan, Y. J. Liu, and Y. P. Zhao, “Integrating aligned nanorod array onto optical fibers for SERS probes,” Proc. SPIE 6327, 63270R (2006).
    [CrossRef]
  31. M. A. Bryant and J. E. Pemberton, “Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols at Ag,” J. Am. Chem. Soc. 113, 3629–3637 (1991).
    [CrossRef]
  32. J. Steele and M. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.: Mater. Electron. 18, 367–379 (2006).
    [CrossRef]
  33. Y. J. Liu, H. Y. Chu, and Y. P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
    [CrossRef]
  34. M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
    [CrossRef]
  35. K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
    [CrossRef]
  36. Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
    [CrossRef]
  37. Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
    [CrossRef]
  38. B. Pettinger, U. Wenning, and H. Wetzel, “Angular resolved Raman-spectra from pyridine adsorbed on silver electrodes,” Chem. Phys. Lett. 67, 192–196 (1979).
    [CrossRef]
  39. Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
    [CrossRef]

2010 (4)

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[CrossRef]

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

Y. J. Liu, H. Y. Chu, and Y. P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
[CrossRef]

2009 (8)

Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
[CrossRef]

E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
[CrossRef]

V. Guieu, P. Garrigue, F. Lagugne-Labarthet, L. Servant, N. Sojic, and D. Talaga, “Remote surface enhanced Raman spectroscopy imaging via a nanostructured optical fiber bundle,” Opt. Express 17, 24030–24035 (2009).
[CrossRef]

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009).
[CrossRef]

W. Yuan, H. P. Ho, R. K. Y. Lee, and S. K. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337(2009).
[CrossRef] [PubMed]

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394, 1761–1774 (2009).
[CrossRef] [PubMed]

2008 (3)

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “First-approximation simulation of dopant diffusion in nanostructured silica optical fibres,” Photonics Nanostruct. 6, 167–177(2008).
[CrossRef]

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008).
[CrossRef] [PubMed]

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

2007 (2)

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38, 377–382 (2007).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
[CrossRef]

2006 (5)

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

J. G. Fan, Y. J. Liu, and Y. P. Zhao, “Integrating aligned nanorod array onto optical fibers for SERS probes,” Proc. SPIE 6327, 63270R (2006).
[CrossRef]

J. Steele and M. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.: Mater. Electron. 18, 367–379 (2006).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

2005 (5)

J.-G. Fan and Y.-P. Zhao, “Direct deposition of aligned nanorod array onto cylindrical objects,” J. Vac. Sci. Technol. B 23, 947–953 (2005).
[CrossRef]

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005).
[CrossRef]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

2004 (1)

2003 (2)

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
[CrossRef]

2002 (1)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271(2002).
[CrossRef]

2000 (3)

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28–36 (2000).
[CrossRef]

E. Polwart, R. L. Keir, C. M. Davidson, W. E. Smith, and D. A. Sadler, “Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles,” Appl. Spectrosc. 54, 522–527 (2000).
[CrossRef]

C. Viets and W. Hill, “Fibre-optic SERS sensors,” Internet J. Vib. Spectrosc. 4 (2000), http://www.ijvs.com.

1998 (1)

K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
[CrossRef]

1991 (2)

M. A. Bryant and J. E. Pemberton, “Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols at Ag,” J. Am. Chem. Soc. 113, 3629–3637 (1991).
[CrossRef]

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

1990 (1)

1979 (1)

B. Pettinger, U. Wenning, and H. Wetzel, “Angular resolved Raman-spectra from pyridine adsorbed on silver electrodes,” Chem. Phys. Lett. 67, 192–196 (1979).
[CrossRef]

Austin, M. W.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
[CrossRef]

Bao, J. M.

E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Bello, J. M.

Besenbacher, F.

K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
[CrossRef]

Bohr, H.

J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009).
[CrossRef]

Brett, M.

J. Steele and M. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.: Mater. Electron. 18, 367–379 (2006).
[CrossRef]

Brett, M. J.

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

Brown, R. J. C.

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Bryant, M. A.

M. A. Bryant and J. E. Pemberton, “Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols at Ag,” J. Am. Chem. Soc. 113, 3629–3637 (1991).
[CrossRef]

Capasso, F.

E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Carron, K. T.

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

Chaney, S. B.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Chen, M. D.

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

Chi, Z. H.

Chu, H. Y.

Y. J. Liu, H. Y. Chu, and Y. P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Cohen, L. F.

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Comsa, G.

K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
[CrossRef]

Davidson, C. M.

Dickey, M. D.

E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Dluhy, R. A.

Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
[CrossRef]

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Driskell, J. D.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

Du, H.

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[CrossRef]

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

Duan, J. M.

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

Dyer, M. J.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271(2002).
[CrossRef]

Etchegoin, P.

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Fan, J. G.

J. G. Fan, Y. J. Liu, and Y. P. Zhao, “Integrating aligned nanorod array onto optical fibers for SERS probes,” Proc. SPIE 6327, 63270R (2006).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Fan, J.-G.

J.-G. Fan and Y.-P. Zhao, “Direct deposition of aligned nanorod array onto cylindrical objects,” J. Vac. Sci. Technol. B 23, 947–953 (2005).
[CrossRef]

Gallop, J. C.

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Garrigue, P.

Glucksberg, M. R.

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

Gregas, M. K.

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008).
[CrossRef] [PubMed]

Gu, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
[CrossRef]

Guieu, V.

Gupta, R.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271(2002).
[CrossRef]

Han, Y.

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[CrossRef]

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

Hartigan, H.

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Haynes, C. L.

C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005).
[CrossRef]

He, Y.

Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
[CrossRef]

Hill, W.

C. Viets and W. Hill, “Fibre-optic SERS sensors,” Internet J. Vib. Spectrosc. 4 (2000), http://www.ijvs.com.

Ho, H. P.

Jensen, M. O.

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

Jung, D. S.

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

Kanka, J.

Keir, R. L.

Kim, K.

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

Kim, N. H.

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

Kneipp, J.

J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009).
[CrossRef]

Kneipp, K.

J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009).
[CrossRef]

Kong, S. K.

Kostovski, G.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
[CrossRef]

Laegsgaard, E.

K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
[CrossRef]

Lagugne-Labarthet, F.

Lee, J. K.

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

Lee, R. K. Y.

Lee, Y.

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

Lee, Y. M.

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

Li, Z. P.

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

Liu, S. S.

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

Liu, Y.

Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
[CrossRef]

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

Liu, Y. J.

Y. J. Liu, H. Y. Chu, and Y. P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
[CrossRef]

J. G. Fan, Y. J. Liu, and Y. P. Zhao, “Integrating aligned nanorod array onto optical fibers for SERS probes,” Proc. SPIE 6327, 63270R (2006).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Lu, T.-M.

Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
[CrossRef]

Lyandres, N. S. O.

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

Maher, R. C.

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Mazzolini, A. P.

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “First-approximation simulation of dopant diffusion in nanostructured silica optical fibres,” Photonics Nanostruct. 6, 167–177(2008).
[CrossRef]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38, 377–382 (2007).
[CrossRef]

Milton, M. J. T.

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

Mitchell, A.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
[CrossRef]

Morgenstern, K.

K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

Mullen, K. I.

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

Oo, M. K. K.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[CrossRef]

Pemberton, J. E.

M. A. Bryant and J. E. Pemberton, “Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols at Ag,” J. Am. Chem. Soc. 113, 3629–3637 (1991).
[CrossRef]

Pettinger, B.

B. Pettinger, U. Wenning, and H. Wetzel, “Angular resolved Raman-spectra from pyridine adsorbed on silver electrodes,” Chem. Phys. Lett. 67, 192–196 (1979).
[CrossRef]

Polwart, E.

Pristinski, D.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

Rosenfeld, G.

K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
[CrossRef]

Sadler, D. A.

Scaffidi, J. P.

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008).
[CrossRef] [PubMed]

Seballos, L.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
[CrossRef]

Seewaldt, V.

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008).
[CrossRef] [PubMed]

Servant, L.

Shanmukh, S.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Shi, C.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
[CrossRef]

Smith, W. E.

Smythe, E. J.

E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Sojic, N.

Steele, J.

J. Steele and M. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.: Mater. Electron. 18, 367–379 (2006).
[CrossRef]

Stoddart, P. R.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
[CrossRef]

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394, 1761–1774 (2009).
[CrossRef] [PubMed]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “First-approximation simulation of dopant diffusion in nanostructured silica optical fibres,” Photonics Nanostruct. 6, 167–177(2008).
[CrossRef]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38, 377–382 (2007).
[CrossRef]

Stokes, D. L.

Stuart, D. A.

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

Sukhishvili, S.

M. K. K. Oo, Y. Han, J. Kanka, S. Sukhishvili, and H. Du, “Structure fits the purpose: photonic crystal fibers for evanescent-field surface-enhanced Raman spectroscopy,” Opt. Lett. 35, 466–468 (2010).
[CrossRef]

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

Sun, M. T.

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

Talaga, D.

Tan, S. L.

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

Tang, X. J.

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

Van Duyne, R. P.

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005).
[CrossRef]

Viets, C.

C. Viets and W. Hill, “Fibre-optic SERS sensors,” Internet J. Vib. Spectrosc. 4 (2000), http://www.ijvs.com.

Vo-Dinh, T.

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008).
[CrossRef] [PubMed]

D. L. Stokes, Z. H. Chi, and T. Vo-Dinh, “Surface-enhanced-Raman-scattering-inducing nanoprobe for spectrochemical analysis,” Appl. Spectrosc. 58, 292–298 (2004).
[CrossRef] [PubMed]

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28–36 (2000).
[CrossRef]

J. M. Bello and T. Vo-Dinh, “Surface-enhanced Raman-scattering fiberoptic sensor,” Appl. Spectrosc. 44, 63–69(1990).
[CrossRef]

Walsh, J. T.

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

Wang, G.-C.

Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
[CrossRef]

Weimer, W. A.

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271(2002).
[CrossRef]

Wenning, U.

B. Pettinger, U. Wenning, and H. Wetzel, “Angular resolved Raman-spectra from pyridine adsorbed on silver electrodes,” Chem. Phys. Lett. 67, 192–196 (1979).
[CrossRef]

Wetzel, H.

B. Pettinger, U. Wenning, and H. Wetzel, “Angular resolved Raman-spectra from pyridine adsorbed on silver electrodes,” Chem. Phys. Lett. 67, 192–196 (1979).
[CrossRef]

White, D. J.

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
[CrossRef]

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394, 1761–1774 (2009).
[CrossRef] [PubMed]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “First-approximation simulation of dopant diffusion in nanostructured silica optical fibres,” Photonics Nanostruct. 6, 167–177(2008).
[CrossRef]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38, 377–382 (2007).
[CrossRef]

Whitesides, G. M.

E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Wittig, B.

J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009).
[CrossRef]

Xu, H. X.

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

Ye, D.

Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
[CrossRef]

Yonzon, C. R.

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005).
[CrossRef]

Yuan, W.

Yuen, J. M.

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

Zhang, J. Z.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
[CrossRef]

Zhang, X. Y.

C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005).
[CrossRef]

Zhang, Y.

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
[CrossRef]

Zhang, Z.

Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
[CrossRef]

Zhang, Z. Y.

Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
[CrossRef]

Zhao, Q.

Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
[CrossRef]

Zhao, Y.

Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
[CrossRef]

Zhao, Y. P.

Y. J. Liu, H. Y. Chu, and Y. P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
[CrossRef]

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

J. G. Fan, Y. J. Liu, and Y. P. Zhao, “Integrating aligned nanorod array onto optical fibers for SERS probes,” Proc. SPIE 6327, 63270R (2006).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Zhao, Y.-P.

Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
[CrossRef]

J.-G. Fan and Y.-P. Zhao, “Direct deposition of aligned nanorod array onto cylindrical objects,” J. Vac. Sci. Technol. B 23, 947–953 (2005).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Zhou, Q.

Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
[CrossRef]

Adv. Mater. (1)

Y. Han, S. L. Tan, M. K. K. Oo, D. Pristinski, S. Sukhishvili, and H. Du, “Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers,” Adv. Mater. 22, 2647–2651 (2010).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (2)

J. P. Scaffidi, M. K. Gregas, V. Seewaldt, and T. Vo-Dinh, “SERS-based plasmonic nanobiosensing in single living cells,” Anal. Bioanal. Chem. 393, 1135–1141 (2008).
[CrossRef] [PubMed]

P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem. 394, 1761–1774 (2009).
[CrossRef] [PubMed]

Anal. Chem. (2)

D. A. Stuart, J. M. Yuen, N. S. O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, and R. P. Van Duyne, “In vivo glucose measurement by surface-enhanced Raman spectroscopy,” Anal. Chem. 78, 7211–7215 (2006).
[CrossRef] [PubMed]

K. I. Mullen and K. T. Carron, “Surface-enhanced Raman-spectroscopy with abrasively modified fiber optic probes,” Anal. Chem. 63, 2196–2199 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Q. Zhou, Y. Liu, Y. He, Z. Zhang, and Y.-P. Zhao, “The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates,” Appl. Phys. Lett. 97, 121902(2010).
[CrossRef]

S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett. 87, 031908 (2005).
[CrossRef]

Y. Zhang, C. Shi, C. Gu, L. Seballos, and J. Z. Zhang, “Liquid core photonic crystal fiber sensor based on surface enhanced Raman scattering,” Appl. Phys. Lett. 90, 193504(2007).
[CrossRef]

Y. J. Liu, J. G. Fan, Y. P. Zhao, S. Shanmukh, and R. A. Dluhy, “Angle dependent surface enhanced Raman scattering obtained from a Ag nanorod array substrate,” Appl. Phys. Lett. 89, 173134 (2006).
[CrossRef]

Appl. Spectrosc. (3)

Biosens. Bioelectron. (1)

G. Kostovski, D. J. White, A. Mitchell, M. W. Austin, and P. R. Stoddart, “Nanoimprinted optical fibres: Biotemplated nanostructures for SERS sensing,” Biosens. Bioelectron. 24, 1531–1535 (2009).
[CrossRef]

Chem. Phys. Lett. (2)

P. Etchegoin, R. C. Maher, L. F. Cohen, H. Hartigan, R. J. C. Brown, M. J. T. Milton, and J. C. Gallop, “New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS),” Chem. Phys. Lett. 375, 84–90(2003).
[CrossRef]

B. Pettinger, U. Wenning, and H. Wetzel, “Angular resolved Raman-spectra from pyridine adsorbed on silver electrodes,” Chem. Phys. Lett. 67, 192–196 (1979).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

M. O. Jensen and M. J. Brett, “Periodically structured glancing angle deposition thin films,” IEEE Trans. Nanotechnol. 4, 269–277 (2005).
[CrossRef]

Internet J. Vib. Spectrosc. (1)

C. Viets and W. Hill, “Fibre-optic SERS sensors,” Internet J. Vib. Spectrosc. 4 (2000), http://www.ijvs.com.

J. Am. Chem. Soc. (1)

M. A. Bryant and J. E. Pemberton, “Surface Raman-scattering of self-assembled monolayers formed from 1-alkanethiols at Ag,” J. Am. Chem. Soc. 113, 3629–3637 (1991).
[CrossRef]

J. Appl. Phys. (1)

R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264–5271(2002).
[CrossRef]

J. Mater. Chem. (1)

D. S. Jung, Y. M. Lee, Y. Lee, N. H. Kim, K. Kim, and J. K. Lee, “Facile fabrication of large area nanostructures for efficient surface-enhanced Raman scattering,” J. Mater. Chem. 16, 3145–3149 (2006).
[CrossRef]

J. Mater. Sci.: Mater. Electron. (1)

J. Steele and M. Brett, “Nanostructure engineering in porous columnar thin films: recent advances,” J. Mater. Sci.: Mater. Electron. 18, 367–379 (2006).
[CrossRef]

J. Phys. Chem. C (3)

Y. J. Liu, H. Y. Chu, and Y. P. Zhao, “Silver nanorod array substrates fabricated by oblique angle deposition: morphological, optical, and SERS characterizations,” J. Phys. Chem. C 114, 8176–8183 (2010).
[CrossRef]

J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod Arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates,” J. Phys. Chem. C 112, 895–901 (2008).
[CrossRef]

Y. J. Liu, Z. Y. Zhang, Q. Zhao, R. A. Dluhy, and Y. P. Zhao, “Surface enhanced Raman scattering from an Ag nanorod array substrate: the site dependent enhancement and layer absorbance effect,” J. Phys. Chem. C 113, 9664–9669(2009).
[CrossRef]

J. Raman Spectrosc. (4)

M. T. Sun, S. S. Liu, Z. P. Li, J. M. Duan, M. D. Chen, and H. X. Xu, “Direct visual evidence for the chemical mechanism of surface-enhanced resonance Raman scattering via charge transfer: (II) Binding-site and quantum-size effects,” J. Raman Spectrosc. 40, 1172–1177 (2009).
[CrossRef]

C. L. Haynes, C. R. Yonzon, X. Y. Zhang, and R. P. Van Duyne, “Surface-enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection,” J. Raman Spectrosc. 36, 471–484(2005).
[CrossRef]

M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” J. Raman Spectrosc. 36, 485–496 (2005).
[CrossRef]

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “Fabrication of a range of SERS substrates on nanostructured multicore optical fibres,” J. Raman Spectrosc. 38, 377–382 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J.-G. Fan and Y.-P. Zhao, “Direct deposition of aligned nanorod array onto cylindrical objects,” J. Vac. Sci. Technol. B 23, 947–953 (2005).
[CrossRef]

Nano Lett. (1)

E. J. Smythe, M. D. Dickey, J. M. Bao, G. M. Whitesides, and F. Capasso, “Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,” Nano Lett. 9, 1132–1138 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photonics Nanostruct. (1)

D. J. White, A. P. Mazzolini, and P. R. Stoddart, “First-approximation simulation of dopant diffusion in nanostructured silica optical fibres,” Photonics Nanostruct. 6, 167–177(2008).
[CrossRef]

Phys. Rev. Lett. (1)

K. Morgenstern, G. Rosenfeld, E. Laegsgaard, F. Besenbacher, and G. Comsa, “Measurement of energies controlling ripening and annealing on metal surfaces,” Phys. Rev. Lett. 80, 556–559 (1998).
[CrossRef]

Proc. SPIE (2)

Y. Zhao, D. Ye, G.-C. Wang, and T.-M. Lu, “Designing nanostructures by glancing angle deposition,” Proc. SPIE 5219, 59–73 (2003).
[CrossRef]

J. G. Fan, Y. J. Liu, and Y. P. Zhao, “Integrating aligned nanorod array onto optical fibers for SERS probes,” Proc. SPIE 6327, 63270R (2006).
[CrossRef]

Sens. Actuators B (1)

D. L. Stokes and T. Vo-Dinh, “Development of an integrated single-fiber SERS sensor,” Sens. Actuators B 69, 28–36 (2000).
[CrossRef]

Theor. Chem. Acc. (1)

J. Kneipp, B. Wittig, H. Bohr, and K. Kneipp, “Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine,” Theor. Chem. Acc. 125, 319–327(2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for oblique angle deposition. The inset shows the growth of nanorods on the fiber tip. The angle between the sample normal and the direction of vapor flux is depicted as θ.

Fig. 2
Fig. 2

SERS measurement methods for a) silicon wafer, b) optical fiber in the direct sensing geometry, and c) optical fiber in the remote sensing geometry.

Fig. 3
Fig. 3

Experimental setup for the transmission measurements through the fiber with the OAD silver coating. The white light was sent through a microscope to control the intensity coupled into the fiber sample.

Fig. 4
Fig. 4

a) Typical thiophenol SERS spectra from the direct and remote measurements for a deposition angle of 86 ° . The large background of 500 cm 1 in the remote geometry is due to Raman scattering in the silica optical fiber. b) Variation in the average peak intensity of the four main thiophenol peaks as a function of the vapor deposition angle θ. The error bars represent the standard deviation across ten measurements.

Fig. 5
Fig. 5

SEM images of the silver nanorod formation on a silicon wafer, cross section and top-down view with nominal thicknesses of (a) 100, (b) 200, (c) 300, (d) 400, (e) 500, and (f) 600 nm , with the scale bar showing 200 nm . The vapor deposition angle was maintained at 86 ° .

Fig. 6
Fig. 6

Relationship between the nominal thickness as recorded on the quartz crystal microbalance and the actual nanorod length as estimated using the SEM images of Fig. 5.

Fig. 7
Fig. 7

Average SERS intensity of the fiber samples in remote and direct interrogation is plotted against nanorod length. Each data point was an average of 10 measurements per fiber across five fibers.

Fig. 8
Fig. 8

Absorbance profile for different nanorod lengths on optical fiber tips. A Savitzky–Golay filter has been used to smooth the data.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A λ = log 10 ( I λ D λ I 0 D λ ) ,

Metrics