Abstract

We propose and demonstrate a highly flexible fiber laser capable of generating stable multiwavelength picosecond and single wavelength femtosecond pulses by using a semiconductor saturable absorber mirror and a contrast ratio tunable comb filter. In the multiwavelength lasing regime, up to 11-wavelength stable mode-locked pulses in 3dB bandwidth with a channel spacing of 0.8nm were obtained. While in the single wavelength with broadband spectrum lasing regime, the fiber laser emitted 576fs soliton pulse. Through changing the contrast ratio of the comb filter, the conversion between the multi wavelength picosecond and single wavelength femtosecond pulsed operations could be efficiently achieved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. E. Town, L. Chen, and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
    [CrossRef]
  2. S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604–606 (2006).
    [CrossRef]
  3. G. Sun, D. S. Moon, A. Lin, W. T. Han, and Y. Chung, “Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror,” Opt. Express 16, 3652–3658 (2008).
    [CrossRef] [PubMed]
  4. Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
    [CrossRef]
  5. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009).
    [CrossRef] [PubMed]
  6. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [CrossRef]
  7. D. Y. Tang and L. M. Zhao, “Generation of 47 fs pulses directly from an erbium-doped fiber laser,” Opt. Lett. 32, 41–43 (2007).
    [CrossRef]
  8. J. W. Nicholson, S. Ramachandran, and S. Ghalmi, “A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber,” Opt. Express 15, 6623–6628 (2007).
    [CrossRef] [PubMed]
  9. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
    [CrossRef]
  10. E. M. Dianov, A. A. Krylov, V. V. Dvoyrin, V. M. Mashinsky, P. G. Kryukov, O. G. Okhotnikov, and M. Guina, “Mode-locked Bi-doped fiber laser,” J. Opt. Soc. Am. B 24, 1807–1808(2007).
    [CrossRef]
  11. H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
    [CrossRef]
  12. X. Feng, H. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
    [CrossRef] [PubMed]
  13. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multiwavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett. 33, 324–326 (2008).
    [CrossRef] [PubMed]
  14. Y. J. Chai, C. G. Leburn, A. A. Lagatsky, C. T. A. Brown, R. V. Penty, I. H. White, and W. Sibbett, “1.36 Tb/s spectral slicing source based on a Cr4+-YAG femtosecond laser,” J. Lightwave Technol. 23, 1319–1324 (2005).
    [CrossRef]
  15. A. P. Luo, Z. C. Luo, and W. C. Xu, “Tunable and switchable multi-wavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer,” Opt. Lett. 34, 2135–2137 (2009).
    [CrossRef] [PubMed]
  16. Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
    [CrossRef]
  17. Q. Ye, R. Huang, Q. Xu, H. W. Cai, R. H. Qu, and Z. J. Fang, “Numerical investigation of ultrashort complex pulse generation based on pulse shaping using a superstructure fiber Bragg grating,” J. Lightwave Technol. 27, 2449–2456 (2009).
    [CrossRef]
  18. J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and X. S. Yao, “Two-dimensionally tunable microwave signal generation based on optical frequency-to-time conversion,” Opt. Lett. 35, 2606–2608 (2010).
    [CrossRef] [PubMed]

2010

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[CrossRef]

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

J. Ye, L. Yan, W. Pan, B. Luo, X. Zou, A. Yi, and X. S. Yao, “Two-dimensionally tunable microwave signal generation based on optical frequency-to-time conversion,” Opt. Lett. 35, 2606–2608 (2010).
[CrossRef] [PubMed]

2009

2008

2007

2006

S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604–606 (2006).
[CrossRef]

X. Feng, H. Tam, and P. K. A. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express 14, 8205–8210 (2006).
[CrossRef] [PubMed]

2005

2000

G. E. Town, L. Chen, and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

1997

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

1992

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

Bao, Q.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[CrossRef]

Brown, C. T. A.

Cai, H. W.

Chai, Y. J.

Chen, L.

G. E. Town, L. Chen, and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

Chen, Z.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Chung, Y.

Dianov, E. M.

Dutta, N. K.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Dvoyrin, V. V.

Fang, Z. J.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

Q. Ye, R. Huang, Q. Xu, H. W. Cai, R. H. Qu, and Z. J. Fang, “Numerical investigation of ultrashort complex pulse generation based on pulse shaping using a superstructure fiber Bragg grating,” J. Lightwave Technol. 27, 2449–2456 (2009).
[CrossRef]

Feng, X.

Ghalmi, S.

Guina, M.

Han, W. T.

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Huang, R.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Knize, R. J.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[CrossRef]

Krylov, A. A.

Kryukov, P. G.

Lagatsky, A. A.

Leburn, C. G.

Lin, A.

Lin, J.

Liu, J. R.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

Loh, K. P.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[CrossRef]

Lou, C. Y.

S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604–606 (2006).
[CrossRef]

Luo, A. P.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

A. P. Luo, Z. C. Luo, and W. C. Xu, “Tunable and switchable multi-wavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer,” Opt. Lett. 34, 2135–2137 (2009).
[CrossRef] [PubMed]

Luo, B.

Luo, Z. C.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

A. P. Luo, Z. C. Luo, and W. C. Xu, “Tunable and switchable multi-wavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer,” Opt. Lett. 34, 2135–2137 (2009).
[CrossRef] [PubMed]

Ma, S.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Mashinsky, V. M.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

Moon, D. S.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

Nicholson, J. W.

Okhotnikov, O. G.

Pan, S. L.

S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604–606 (2006).
[CrossRef]

Pan, W.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

Penty, R. V.

Qu, R. H.

Ramachandran, S.

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

Sibbett, W.

Smith, P. W. E.

G. E. Town, L. Chen, and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

Sun, G.

Sun, H.

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

Tam, H.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Tang, D. Y.

Town, G. E.

G. E. Town, L. Chen, and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

Wai, P. K. A.

White, I. H.

Wu, J.

Wu, X.

Xia, Y.

Xu, K.

Xu, Q.

Xu, W. C.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

A. P. Luo, Z. C. Luo, and W. C. Xu, “Tunable and switchable multi-wavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer,” Opt. Lett. 34, 2135–2137 (2009).
[CrossRef] [PubMed]

Yan, L.

Yao, X. S.

Ye, J.

Ye, Q.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

Q. Ye, R. Huang, Q. Xu, H. W. Cai, R. H. Qu, and Z. J. Fang, “Numerical investigation of ultrashort complex pulse generation based on pulse shaping using a superstructure fiber Bragg grating,” J. Lightwave Technol. 27, 2449–2456 (2009).
[CrossRef]

Yi, A.

Yin, H. S.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

Zhan, L.

Zhang, H.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[CrossRef]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009).
[CrossRef] [PubMed]

Zhang, Z.

Zhao, L.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[CrossRef]

Zhao, L. M.

Zou, X.

Appl. Phys. B

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[CrossRef]

Appl. Phys. Lett.

H. Zhang, D. Y. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett. 96, 111112 (2010).
[CrossRef]

Electron. Lett.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

G. E. Town, L. Chen, and P. W. E. Smith, “Dual wavelength modelocked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000).
[CrossRef]

S. L. Pan and C. Y. Lou, “Multiwavelength pulse generation using an actively mode-locked erbium-doped fiber ring laser based on distributed dispersion cavity,” IEEE Photon. Technol. Lett. 18, 604–606 (2006).
[CrossRef]

Z. Chen, H. Sun, S. Ma, and N. K. Dutta, “Dual-wavelength mode-locked erbium-doped fiber ring laser using highly nonlinear fiber,” IEEE Photon. Technol. Lett. 20, 2066–2068 (2008).
[CrossRef]

IEEE Photonics J.

Z. C. Luo, A. P. Luo, W. C. Xu, H. S. Yin, J. R. Liu, Q. Ye, and Z. J. Fang, “Tunable multiwavelength passively mode-locked fiber ring laser using intracavity birefringence-induced comb filter,” IEEE Photonics J. 2, 571–577 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the proposed multifunction fiber laser.

Fig. 2
Fig. 2

Multiwavelength passively mode-locked operation. (a) Lasing location centered at 1540 nm . (b) Lasing location centered at 1550 nm .

Fig. 3
Fig. 3

(a) Pulse-train and autocorrelation trace of the lasing wavelength centered at 1538.81 nm . (b) Spectral bandwidths and pulse durations of the main six lasing wavelengths corresponding to Fig. 2a.

Fig. 4
Fig. 4

Repeatedly scanned output 20 times with a 2 min interval.

Fig. 5
Fig. 5

Broadband spectrum of the femtosecond pulse.

Fig. 6
Fig. 6

Output pulse train and autocorrelation trace of femtosecond mode-locking operation.

Metrics