Abstract

The light modulating ability of gradient polymer-disposed liquid crystal (PDLC) single layer of large droplets formed by nematic E7 in UV-cured polymer NOA65 is studied. Operating at relatively low voltages, such PDLC film with a of thickness 1025μm and droplet size up to 50μm exhibits a good contrast ratio and is capable of producing a large phase shift for the propagating coherent light. For a linearly polarized He–Ne laser (λ=633nm), an electrically commanded phase shift as large as π/2 can be obtained by the large-droplet region of the film. The electrically produced phase shift and its spatial profile controlled by the thickness of the gradient PDLC single layers of large nematic droplets can be useful for tunable spatial light modulators and other devices for active control of laser light.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Doane, “Polymer dispersed liquid crystal displays,” in Liquid Crystals: Applications and Uses, B.Bahadur, ed. (World Scientific, 1990), Vol.  1, pp. 361–396.
  2. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).
  3. G. P. Crawford and S. Zumer, “Historical perspective of liquid crystals confined to curved geometries: from freely suspended droplets to flat-panel displays,” in Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, G.P.Crawford and S.Zumer, eds. (Taylor and Francis, 1996), pp. 1–20.
  4. F. Bloisi and L. Vicari, “Polymer dispersed liquid crystals,” in Optical Applications of Liquid Crystals (Series in Optics and Optoelectronics), L.Vicari, ed. (Institute of Physics, 2003), pp. 148–200.
  5. P. Drzaic, “Putting liquid crystal droplets to work: a short history of polymer dispersed liquid crystals,” Liq. Cryst. 33, 1281–1285 (2006).
    [CrossRef]
  6. J. W. Doane, “PDLC shutters: where has this technology gone?,” Liq. Cryst. 33, 1313–1314 (2006).
    [CrossRef]
  7. J. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
    [CrossRef]
  8. S. T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).
  9. J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991).
    [CrossRef]
  10. J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
    [CrossRef]
  11. L. McKenna, L. S. Miller, and I. R. Peterson, “Polymer dispersed liquid crystal films for modulating infra-red radiation,” Polymer 45, 6977–6984 (2004).
    [CrossRef]
  12. F. Bloisi and L. Vicari, “Laser beam manipulation by composite material electro-optic devices,” Opt. Lasers Eng. 39, 389–408 (2003).
    [CrossRef]
  13. F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
    [CrossRef]
  14. L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
    [CrossRef]
  15. O. Levy, “Electro-optical phase shift in polymer dispersed liquid crystals,” Eur. Phys. J. E 3, 11–20 (2000).
    [CrossRef]
  16. H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
    [CrossRef]
  17. G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Linear size gradient single layers of polymer-dispersed liquid crystal micrometer-sized droplets for diffractive optics,” Opt. Mater. 31, 1578–1585 (2009).
    [CrossRef]
  18. G. B. Hadjichristov, Y. Marinov, and A. G. Petrov, “Single-layered PDLC for diffractive optics,” Mol. Cryst. Liq. Cryst. 525, 128–139 (2010).
    [CrossRef]
  19. Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered PDLC films for electrically variable laser light reflection application,” Opt. Lasers Eng. 48, 1161–1165 (2010).
    [CrossRef]
  20. Y. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Controllable-gradient microscale PDLC electro-optical materials formed by nanosecond laser photopolymerization,” J. Optoelectron. Adv. Mater. 9, 417–419 (2007).
  21. D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990).
    [CrossRef]
  22. P. S. Drzaic and A. Muller, “Droplet shape and reorientation fields in nematic droplet/polymer films,” Liq. Cryst. 5, 1467–1475 (1989).
    [CrossRef]
  23. Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered microscale linear-gradient PDLC material for electro-optics,” Cryst. Res. Technol. 44, 870–878 (2009).
    [CrossRef]
  24. S. J. Klosowicz and M. Aleksander, “Effect of polymer-dispersed liquid crystal morphology on its optical performance,” Opto-Electron. Rev. 12, 305–312 (2004).
  25. A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
    [CrossRef]
  26. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  27. D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996).
    [CrossRef]
  28. V. A. Loiko and A. A. Miskevich, “Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients,” Appl. Opt. 44, 3759–3768 (2005).
    [CrossRef] [PubMed]
  29. V. P. Dick and V. A. Loiko, “Model for coherent transmittance calculation for polymer dispersed liquid crystal films,” Liq. Cryst. 28, 1193–1198 (2001).
    [CrossRef]
  30. K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: Temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
    [CrossRef]
  31. P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
    [CrossRef]
  32. B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1485 (1989).
    [CrossRef]
  33. D. Coates, “Normal and reverse mode polymer dispersed liquid crystal devices,” Displays 14, 94–103 (1993).
    [CrossRef]
  34. S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
    [CrossRef]
  35. K. R. Amundson and M. Srinivasaro, “Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation,” Phys. Rev. E 58, R1211–R1214 (1998).
    [CrossRef]
  36. R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
    [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 695.
  38. H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
    [CrossRef]
  39. P. J. W. Hands, A. K. Kirby, and G. D. Love, “Phase modulation with polymer-dispersed liquid crystals,” Proc. SPIE 5894, 58940L–58948L (2005).
    [CrossRef]
  40. D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
    [CrossRef]
  41. F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996).
    [CrossRef]
  42. D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003).
    [CrossRef]
  43. A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
    [CrossRef] [PubMed]
  44. V. A. Loiko and V. P. Dick, “Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: Effect of correlation and polydispersity of droplets,” Opt. Spectrosc. 94, 595–599 (2003).
    [CrossRef]

2010 (2)

G. B. Hadjichristov, Y. Marinov, and A. G. Petrov, “Single-layered PDLC for diffractive optics,” Mol. Cryst. Liq. Cryst. 525, 128–139 (2010).
[CrossRef]

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered PDLC films for electrically variable laser light reflection application,” Opt. Lasers Eng. 48, 1161–1165 (2010).
[CrossRef]

2009 (3)

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered microscale linear-gradient PDLC material for electro-optics,” Cryst. Res. Technol. 44, 870–878 (2009).
[CrossRef]

J. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Linear size gradient single layers of polymer-dispersed liquid crystal micrometer-sized droplets for diffractive optics,” Opt. Mater. 31, 1578–1585 (2009).
[CrossRef]

2007 (1)

Y. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Controllable-gradient microscale PDLC electro-optical materials formed by nanosecond laser photopolymerization,” J. Optoelectron. Adv. Mater. 9, 417–419 (2007).

2006 (2)

P. Drzaic, “Putting liquid crystal droplets to work: a short history of polymer dispersed liquid crystals,” Liq. Cryst. 33, 1281–1285 (2006).
[CrossRef]

J. W. Doane, “PDLC shutters: where has this technology gone?,” Liq. Cryst. 33, 1313–1314 (2006).
[CrossRef]

2005 (3)

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

V. A. Loiko and A. A. Miskevich, “Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients,” Appl. Opt. 44, 3759–3768 (2005).
[CrossRef] [PubMed]

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Phase modulation with polymer-dispersed liquid crystals,” Proc. SPIE 5894, 58940L–58948L (2005).
[CrossRef]

2004 (3)

A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

S. J. Klosowicz and M. Aleksander, “Effect of polymer-dispersed liquid crystal morphology on its optical performance,” Opto-Electron. Rev. 12, 305–312 (2004).

L. McKenna, L. S. Miller, and I. R. Peterson, “Polymer dispersed liquid crystal films for modulating infra-red radiation,” Polymer 45, 6977–6984 (2004).
[CrossRef]

2003 (4)

F. Bloisi and L. Vicari, “Laser beam manipulation by composite material electro-optic devices,” Opt. Lasers Eng. 39, 389–408 (2003).
[CrossRef]

F. Bloisi and L. Vicari, “Polymer dispersed liquid crystals,” in Optical Applications of Liquid Crystals (Series in Optics and Optoelectronics), L.Vicari, ed. (Institute of Physics, 2003), pp. 148–200.

V. A. Loiko and V. P. Dick, “Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: Effect of correlation and polydispersity of droplets,” Opt. Spectrosc. 94, 595–599 (2003).
[CrossRef]

D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003).
[CrossRef]

2002 (2)

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
[CrossRef]

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

2001 (2)

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

V. P. Dick and V. A. Loiko, “Model for coherent transmittance calculation for polymer dispersed liquid crystal films,” Liq. Cryst. 28, 1193–1198 (2001).
[CrossRef]

2000 (2)

A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
[CrossRef]

O. Levy, “Electro-optical phase shift in polymer dispersed liquid crystals,” Eur. Phys. J. E 3, 11–20 (2000).
[CrossRef]

1999 (1)

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

1998 (1)

K. R. Amundson and M. Srinivasaro, “Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation,” Phys. Rev. E 58, R1211–R1214 (1998).
[CrossRef]

1997 (2)

S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
[CrossRef]

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
[CrossRef]

1996 (4)

G. P. Crawford and S. Zumer, “Historical perspective of liquid crystals confined to curved geometries: from freely suspended droplets to flat-panel displays,” in Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, G.P.Crawford and S.Zumer, eds. (Taylor and Francis, 1996), pp. 1–20.

K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: Temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
[CrossRef]

D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996).
[CrossRef]

F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

1995 (1)

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).

1993 (2)

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

D. Coates, “Normal and reverse mode polymer dispersed liquid crystal devices,” Displays 14, 94–103 (1993).
[CrossRef]

1992 (1)

J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

1991 (1)

J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991).
[CrossRef]

1990 (2)

J. W. Doane, “Polymer dispersed liquid crystal displays,” in Liquid Crystals: Applications and Uses, B.Bahadur, ed. (World Scientific, 1990), Vol.  1, pp. 361–396.

D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990).
[CrossRef]

1989 (2)

P. S. Drzaic and A. Muller, “Droplet shape and reorientation fields in nematic droplet/polymer films,” Liq. Cryst. 5, 1467–1475 (1989).
[CrossRef]

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1485 (1989).
[CrossRef]

1988 (1)

P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

1987 (1)

S. T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).

1980 (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 695.

Aleksander, M.

S. J. Klosowicz and M. Aleksander, “Effect of polymer-dispersed liquid crystal morphology on its optical performance,” Opto-Electron. Rev. 12, 305–312 (2004).

Amundson, K.

K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: Temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
[CrossRef]

Amundson, K. R.

K. R. Amundson and M. Srinivasaro, “Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation,” Phys. Rev. E 58, R1211–R1214 (1998).
[CrossRef]

Anderson, T. W.

J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991).
[CrossRef]

Barna, E. S.

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

Bartolino, R.

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

Basile, F.

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

Blinov, L. M.

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

Bloisi, F.

F. Bloisi and L. Vicari, “Laser beam manipulation by composite material electro-optic devices,” Opt. Lasers Eng. 39, 389–408 (2003).
[CrossRef]

F. Bloisi and L. Vicari, “Polymer dispersed liquid crystals,” in Optical Applications of Liquid Crystals (Series in Optics and Optoelectronics), L.Vicari, ed. (Institute of Physics, 2003), pp. 148–200.

F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

Boo, J.

S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 695.

Bosc, D.

D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996).
[CrossRef]

Carter, S. A.

S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
[CrossRef]

Coates, D.

D. Coates, “Normal and reverse mode polymer dispersed liquid crystal devices,” Displays 14, 94–103 (1993).
[CrossRef]

D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990).
[CrossRef]

Crawford, G. P.

G. P. Crawford and S. Zumer, “Historical perspective of liquid crystals confined to curved geometries: from freely suspended droplets to flat-panel displays,” in Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, G.P.Crawford and S.Zumer, eds. (Taylor and Francis, 1996), pp. 1–20.

Dick, V. P.

V. A. Loiko and V. P. Dick, “Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: Effect of correlation and polydispersity of droplets,” Opt. Spectrosc. 94, 595–599 (2003).
[CrossRef]

V. P. Dick and V. A. Loiko, “Model for coherent transmittance calculation for polymer dispersed liquid crystal films,” Liq. Cryst. 28, 1193–1198 (2001).
[CrossRef]

Doane, J. W.

J. W. Doane, “PDLC shutters: where has this technology gone?,” Liq. Cryst. 33, 1313–1314 (2006).
[CrossRef]

J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991).
[CrossRef]

J. W. Doane, “Polymer dispersed liquid crystal displays,” in Liquid Crystals: Applications and Uses, B.Bahadur, ed. (World Scientific, 1990), Vol.  1, pp. 361–396.

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1485 (1989).
[CrossRef]

Drzaic, P.

P. Drzaic, “Putting liquid crystal droplets to work: a short history of polymer dispersed liquid crystals,” Liq. Cryst. 33, 1281–1285 (2006).
[CrossRef]

Drzaic, P. S.

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).

P. S. Drzaic and A. Muller, “Droplet shape and reorientation fields in nematic droplet/polymer films,” Liq. Cryst. 5, 1467–1475 (1989).
[CrossRef]

P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

Erdmann, J. H.

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1485 (1989).
[CrossRef]

Fan, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

Fernandez-Nieves, A.

D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003).
[CrossRef]

Fernández-Nieves, A.

A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

Greenfield, S.

D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990).
[CrossRef]

Guilbert, M.

D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996).
[CrossRef]

Hadjichristov, G. B.

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered PDLC films for electrically variable laser light reflection application,” Opt. Lasers Eng. 48, 1161–1165 (2010).
[CrossRef]

G. B. Hadjichristov, Y. Marinov, and A. G. Petrov, “Single-layered PDLC for diffractive optics,” Mol. Cryst. Liq. Cryst. 525, 128–139 (2010).
[CrossRef]

G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Linear size gradient single layers of polymer-dispersed liquid crystal micrometer-sized droplets for diffractive optics,” Opt. Mater. 31, 1578–1585 (2009).
[CrossRef]

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered microscale linear-gradient PDLC material for electro-optics,” Cryst. Res. Technol. 44, 870–878 (2009).
[CrossRef]

Y. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Controllable-gradient microscale PDLC electro-optical materials formed by nanosecond laser photopolymerization,” J. Optoelectron. Adv. Mater. 9, 417–419 (2007).

Hands, P. J. W.

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Phase modulation with polymer-dispersed liquid crystals,” Proc. SPIE 5894, 58940L–58948L (2005).
[CrossRef]

Ionescu, A. T.

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

Karapinar, R.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

Khoo, J. C.

J. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

Kirby, A. K.

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Phase modulation with polymer-dispersed liquid crystals,” Proc. SPIE 5894, 58940L–58948L (2005).
[CrossRef]

Klosowicz, S. J.

S. J. Klosowicz and M. Aleksander, “Effect of polymer-dispersed liquid crystal morphology on its optical performance,” Opto-Electron. Rev. 12, 305–312 (2004).

Konkolovich, A. V.

A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
[CrossRef]

LeGrange, J. D.

S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
[CrossRef]

Levy, O.

O. Levy, “Electro-optical phase shift in polymer dispersed liquid crystals,” Eur. Phys. J. E 3, 11–20 (2000).
[CrossRef]

Lin, Y. H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

Link, D. R.

A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003).
[CrossRef]

Loiko, V. A.

V. A. Loiko and A. A. Miskevich, “Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients,” Appl. Opt. 44, 3759–3768 (2005).
[CrossRef] [PubMed]

V. A. Loiko and V. P. Dick, “Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: Effect of correlation and polydispersity of droplets,” Opt. Spectrosc. 94, 595–599 (2003).
[CrossRef]

V. P. Dick and V. A. Loiko, “Model for coherent transmittance calculation for polymer dispersed liquid crystal films,” Liq. Cryst. 28, 1193–1198 (2001).
[CrossRef]

A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
[CrossRef]

Love, G. D.

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Phase modulation with polymer-dispersed liquid crystals,” Proc. SPIE 5894, 58940L–58948L (2005).
[CrossRef]

Lucchetta, D. E.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

Manni, A.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

Marinov, Y.

G. B. Hadjichristov, Y. Marinov, and A. G. Petrov, “Single-layered PDLC for diffractive optics,” Mol. Cryst. Liq. Cryst. 525, 128–139 (2010).
[CrossRef]

Y. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Controllable-gradient microscale PDLC electro-optical materials formed by nanosecond laser photopolymerization,” J. Optoelectron. Adv. Mater. 9, 417–419 (2007).

Marinov, Y. G.

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered PDLC films for electrically variable laser light reflection application,” Opt. Lasers Eng. 48, 1161–1165 (2010).
[CrossRef]

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered microscale linear-gradient PDLC material for electro-optics,” Cryst. Res. Technol. 44, 870–878 (2009).
[CrossRef]

G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Linear size gradient single layers of polymer-dispersed liquid crystal micrometer-sized droplets for diffractive optics,” Opt. Mater. 31, 1578–1585 (2009).
[CrossRef]

McCargar, J. W.

J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991).
[CrossRef]

McKenna, L.

L. McKenna, L. S. Miller, and I. R. Peterson, “Polymer dispersed liquid crystal films for modulating infra-red radiation,” Polymer 45, 6977–6984 (2004).
[CrossRef]

Miller, L. S.

L. McKenna, L. S. Miller, and I. R. Peterson, “Polymer dispersed liquid crystal films for modulating infra-red radiation,” Polymer 45, 6977–6984 (2004).
[CrossRef]

Miskevich, A. A.

Muller, A.

P. S. Drzaic and A. Muller, “Droplet shape and reorientation fields in nematic droplet/polymer films,” Liq. Cryst. 5, 1467–1475 (1989).
[CrossRef]

Ondris-Crawford, R.

J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

Peterson, I. R.

L. McKenna, L. S. Miller, and I. R. Peterson, “Polymer dispersed liquid crystal films for modulating infra-red radiation,” Polymer 45, 6977–6984 (2004).
[CrossRef]

Petrov, A. G.

G. B. Hadjichristov, Y. Marinov, and A. G. Petrov, “Single-layered PDLC for diffractive optics,” Mol. Cryst. Liq. Cryst. 525, 128–139 (2010).
[CrossRef]

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered PDLC films for electrically variable laser light reflection application,” Opt. Lasers Eng. 48, 1161–1165 (2010).
[CrossRef]

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered microscale linear-gradient PDLC material for electro-optics,” Cryst. Res. Technol. 44, 870–878 (2009).
[CrossRef]

G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Linear size gradient single layers of polymer-dispersed liquid crystal micrometer-sized droplets for diffractive optics,” Opt. Mater. 31, 1578–1585 (2009).
[CrossRef]

Y. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Controllable-gradient microscale PDLC electro-optical materials formed by nanosecond laser photopolymerization,” J. Optoelectron. Adv. Mater. 9, 417–419 (2007).

Presnyakov, V. V.

A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
[CrossRef]

Ren, H.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
[CrossRef]

Rudhardt, D.

A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003).
[CrossRef]

Ruocchio, C.

F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

Sage, I. C.

D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990).
[CrossRef]

Scaramuzza, N.

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

Shabanov, V. F.

A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
[CrossRef]

Simoni, F.

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

Smith, G.

D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990).
[CrossRef]

Srinivasaro, M.

K. R. Amundson and M. Srinivasaro, “Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation,” Phys. Rev. E 58, R1211–R1214 (1998).
[CrossRef]

Terrecuso, P.

F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

Trubert, C.

D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996).
[CrossRef]

Vicari, L.

F. Bloisi and L. Vicari, “Laser beam manipulation by composite material electro-optic devices,” Opt. Lasers Eng. 39, 389–408 (2003).
[CrossRef]

F. Bloisi and L. Vicari, “Polymer dispersed liquid crystals,” in Optical Applications of Liquid Crystals (Series in Optics and Optoelectronics), L.Vicari, ed. (Institute of Physics, 2003), pp. 148–200.

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
[CrossRef]

F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

Vinouze, B.

D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996).
[CrossRef]

Weitz, D. A.

A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003).
[CrossRef]

West, J. L.

J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991).
[CrossRef]

White, W.

S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
[CrossRef]

Wiltzius, P.

S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 695.

Wu, B. G.

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1485 (1989).
[CrossRef]

Wu, S. T.

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

S. T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Zumer, S.

G. P. Crawford and S. Zumer, “Historical perspective of liquid crystals confined to curved geometries: from freely suspended droplets to flat-panel displays,” in Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, G.P.Crawford and S.Zumer, eds. (Taylor and Francis, 1996), pp. 1–20.

Zyryanov, V. Y.

A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

D. Bosc, C. Trubert, B. Vinouze, and M. Guilbert, “Validation of a scattering state model for liquid crystal polymer composites,” Appl. Phys. Lett. 68, 2489–2490 (1996).
[CrossRef]

H. Ren, Y. H. Lin, Y. H. Fan, and S. T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystal,” Appl. Phys. Lett. 86, 141110 (2005).
[CrossRef]

H. Ren and S. T. Wu, “Inhomogeneous nanoscale polymer-dispersed liquid crystals with gradient refractive index,” Appl. Phys. Lett. 81, 3537–3539 (2002).
[CrossRef]

D. Rudhardt, A. Fernandez-Nieves, D. R. Link, and D. A. Weitz, “Phase switching of ordered arrays of liquid crystal emulsions,” Appl. Phys. Lett. 82, 2610–2612 (2003).
[CrossRef]

Cryst. Res. Technol. (1)

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered microscale linear-gradient PDLC material for electro-optics,” Cryst. Res. Technol. 44, 870–878 (2009).
[CrossRef]

Displays (1)

D. Coates, “Normal and reverse mode polymer dispersed liquid crystal devices,” Displays 14, 94–103 (1993).
[CrossRef]

Eur. Phys. J. E (1)

O. Levy, “Electro-optical phase shift in polymer dispersed liquid crystals,” Eur. Phys. J. E 3, 11–20 (2000).
[CrossRef]

J. Appl. Phys. (4)

L. Vicari, “Electro-optic phase modulation by polymer dispersed liquid crystals,” J. Appl. Phys. 81, 6612–6615 (1997).
[CrossRef]

S. A. Carter, J. D. LeGrange, W. White, J. Boo, and P. Wiltzius, “Dependence of the morphology of polymer dispersed liquid crystals on the UV polymerization process,” J. Appl. Phys. 81, 5992–5999 (1997).
[CrossRef]

D. E. Lucchetta, R. Karapinar, A. Manni, and F. Simoni, “Phase-only modulation by nanosized polymer-dispersed liquid crystals,” J. Appl. Phys. 91, 6060–6065 (2002).
[CrossRef]

R. Bartolino, N. Scaramuzza, D. E. Lucchetta, E. S. Barna, A. T. Ionescu, and L. M. Blinov, “Polarity sensitive electro-optical response in a nematic liquid crystal–polymer mixture,” J. Appl. Phys. 85, 2870–2874 (1999).
[CrossRef]

J. Electron. Imaging (1)

J. W. McCargar, R. Ondris-Crawford, and J. L. West, “Polymer dispersed liquid crystal infrared light shutter,” J. Electron. Imaging 1, 22–28 (1992).
[CrossRef]

J. Exp. Theor. Phys. Lett. (1)

A. V. Konkolovich, V. V. Presnyakov, V. Y. Zyryanov, V. A. Loiko, and V. F. Shabanov, “Interference quenching of light transmitted through a monolayer film of polymer-dispersed nematic liquid crystal,” J. Exp. Theor. Phys. Lett. 71, 486–488 (2000).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

Y. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Controllable-gradient microscale PDLC electro-optical materials formed by nanosecond laser photopolymerization,” J. Optoelectron. Adv. Mater. 9, 417–419 (2007).

Liq. Cryst. (6)

P. S. Drzaic, “Reorientation dynamics of polymer dispersed nematic liquid crystal films,” Liq. Cryst. 3, 1543–1559 (1988).
[CrossRef]

B. G. Wu, J. H. Erdmann, and J. W. Doane, “Response times and voltages for PDLC light shutters,” Liq. Cryst. 5, 1453–1485 (1989).
[CrossRef]

P. S. Drzaic and A. Muller, “Droplet shape and reorientation fields in nematic droplet/polymer films,” Liq. Cryst. 5, 1467–1475 (1989).
[CrossRef]

V. P. Dick and V. A. Loiko, “Model for coherent transmittance calculation for polymer dispersed liquid crystal films,” Liq. Cryst. 28, 1193–1198 (2001).
[CrossRef]

P. Drzaic, “Putting liquid crystal droplets to work: a short history of polymer dispersed liquid crystals,” Liq. Cryst. 33, 1281–1285 (2006).
[CrossRef]

J. W. Doane, “PDLC shutters: where has this technology gone?,” Liq. Cryst. 33, 1313–1314 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

G. B. Hadjichristov, Y. Marinov, and A. G. Petrov, “Single-layered PDLC for diffractive optics,” Mol. Cryst. Liq. Cryst. 525, 128–139 (2010).
[CrossRef]

Opt. Eng. (1)

S. T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26, 120–128 (1987).

Opt. Lasers Eng. (2)

F. Bloisi and L. Vicari, “Laser beam manipulation by composite material electro-optic devices,” Opt. Lasers Eng. 39, 389–408 (2003).
[CrossRef]

Y. G. Marinov, G. B. Hadjichristov, and A. G. Petrov, “Single-layered PDLC films for electrically variable laser light reflection application,” Opt. Lasers Eng. 48, 1161–1165 (2010).
[CrossRef]

Opt. Mater. (1)

G. B. Hadjichristov, Y. G. Marinov, and A. G. Petrov, “Linear size gradient single layers of polymer-dispersed liquid crystal micrometer-sized droplets for diffractive optics,” Opt. Mater. 31, 1578–1585 (2009).
[CrossRef]

Opt. Spectrosc. (1)

V. A. Loiko and V. P. Dick, “Coherent transmittance of a polymer dispersed liquid crystal film in a strong field: Effect of correlation and polydispersity of droplets,” Opt. Spectrosc. 94, 595–599 (2003).
[CrossRef]

Opto-Electron. Rev. (1)

S. J. Klosowicz and M. Aleksander, “Effect of polymer-dispersed liquid crystal morphology on its optical performance,” Opto-Electron. Rev. 12, 305–312 (2004).

Phys. Rep. (1)

J. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).
[CrossRef]

Phys. Rev. E (4)

F. Basile, F. Bloisi, L. Vicari, and F. Simoni, “Optical phase shift of polymer-dispersed liquid crystals,” Phys. Rev. E 48, 432–438 (1993).
[CrossRef]

K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: Temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
[CrossRef]

K. R. Amundson and M. Srinivasaro, “Liquid-crystal-anchoring transitions at surfaces created by polymerization-induced phase separation,” Phys. Rev. E 58, R1211–R1214 (1998).
[CrossRef]

F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystals,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

A. Fernández-Nieves, D. R. Link, D. Rudhardt, and D. A. Weitz, “Electro-optics of bipolar nematic liquid crystal droplets,” Phys. Rev. Lett. 92, 105503 (2004).
[CrossRef] [PubMed]

Polymer (1)

L. McKenna, L. S. Miller, and I. R. Peterson, “Polymer dispersed liquid crystal films for modulating infra-red radiation,” Polymer 45, 6977–6984 (2004).
[CrossRef]

Proc. SPIE (3)

J. W. McCargar, J. W. Doane, J. L. West, and T. W. Anderson, “Polymer-dispersed liquid-crystal shutters for IR imaging,” Proc. SPIE 1455, 54–60 (1991).
[CrossRef]

D. Coates, S. Greenfield, I. C. Sage, and G. Smith, “Liquid crystal mixtures for polymer matrix displays,” Proc. SPIE 1257, 37–45 (1990).
[CrossRef]

P. J. W. Hands, A. K. Kirby, and G. D. Love, “Phase modulation with polymer-dispersed liquid crystals,” Proc. SPIE 5894, 58940L–58948L (2005).
[CrossRef]

Other (6)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), p. 695.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

J. W. Doane, “Polymer dispersed liquid crystal displays,” in Liquid Crystals: Applications and Uses, B.Bahadur, ed. (World Scientific, 1990), Vol.  1, pp. 361–396.

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).

G. P. Crawford and S. Zumer, “Historical perspective of liquid crystals confined to curved geometries: from freely suspended droplets to flat-panel displays,” in Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, G.P.Crawford and S.Zumer, eds. (Taylor and Francis, 1996), pp. 1–20.

F. Bloisi and L. Vicari, “Polymer dispersed liquid crystals,” in Optical Applications of Liquid Crystals (Series in Optics and Optoelectronics), L.Vicari, ed. (Institute of Physics, 2003), pp. 148–200.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the experimental setup. PD, photo-detector; P, polarizer; A, analyzer. Orientation reference laboratory system is also sketched.

Fig. 2
Fig. 2

AC voltage-dependent transmittance of light ( λ = 632.8 nm , He–Ne laser beam polarization along the Y axis, see Fig. 1) through a linear droplet-gradient microscale PDLC single-layered film at 20 ° C . Data obtained without analyzer. The labels denote the film thickness probed by translation of the PDLC cell across the incident laser beam. The corresponding diameter of the probed LC droplets is indicated in parentheses.

Fig. 3
Fig. 3

Part of the AC voltage-dependent transmittance of the single-layered PDLC film measured at the film thickness 18.8 μm , given in a log-log scale.

Fig. 4
Fig. 4

The hysteresis in the voltage-dependent transmittance of the single-layered PDLC film observed for a forward (increasing voltages) and backward (decreasing voltages) sweep. In both scans, the voltage was changed in steps of 0.2 V , the interval between the acquired data was 1.5 s . The probed thickness of the single-layered PDLC film was 24 μm , the temperature was 25 ° C .

Fig. 5
Fig. 5

τ ON (solid curves) and τ OFF (dashed curves) versus the thickness of the single-layered PDLC film. Time accuracy ± 0.1 ms . The applied AC voltage: 10 V rms (open circles) and 30 V rms (solid circles), the temperature 25 ° C .

Fig. 6
Fig. 6

Oscilloscope trace taken for He–Ne laser light ( λ = 632.8 nm ) transmitted through a region of the single-layered PDLC film at a thickness δ = 18.4 μm and temperature 25 ° C . The pulse of the driving AC voltage is shown on the top.

Fig. 7
Fig. 7

The voltage-dependent transmittance of light ( λ = 632.8 nm from a He–Ne laser) through a linear droplet-gradient microscale single-layered PDLC film ( 20 ° C ) at a film thickness of 24 μm (the corresponding diameter of LC droplets is 48 μm ). Pair of dependencies was measured at normal incidence under (a) parallel (‖) and (b) crossed (⊥) polarizers. (c) The electrically produced optical phase change ( Δ V ) versus the voltage applied. The insert in Fig. 7c is an enlarged graph for Δ V in the voltage range 30 V rms 60 V rms .

Fig. 8
Fig. 8

(a) Electrically produced optical phase shift ( Δ V ) by a single-layered PDLC film as a function of the film thickness ( λ = 632.8 nm ). The applied voltage is 10 V rms (open circles) and 30 V rms (solid circles); (b) the maximum phase shift ( Δ V max ) (squares) and the total phase change ( Δ Φ ) (solid circles) achievable by varying the applied voltage from 0 to 40 V rms (or vise versa). The phase shift measured at V = 0 and V = 40 V rms is also shown.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ ON = γ 1 Δ ε E 2 4 π [ ( R 2 / R 1 ) 2 1 ] K R 2
τ OFF = γ 1 R 2 [ ( R 2 / R 1 ) 2 1 ] K ,
Δ = 2 π δ Δ n / λ ,
| Δ | = N π + Δ V , N = 0 , 2 , 4 , ,
Δ V = 2 tan 1 T / T ,

Metrics