Abstract

We report on the development of a new sensor for NO2 with ultrahigh sensitivity of detection. This has been accomplished by combining off-axis integrated cavity output spectroscopy (OA-ICOS) (which can provide large path lengths of the order of several kilometers in a small volume cell) with multiple-line integrated absorption spectroscopy (MLIAS) (where we integrate the absorption spectra over a large number of rotational–vibrational transitions of the molecular species to further improve the sensitivity). Employing an external cavity quantum cascade laser operating in the 16011670cm1 range and a high-finesse optical cavity, the absorption spectra of NO2 over 100 transitions in the R band have been recorded. From the observed linear relationship between the integrated absorption versus concentration of NO2 and the standard deviation of the integrated absorption signal, we report an effective sensitivity of detection of approximately 28ppt (parts in 1012) for NO2. To the best of our knowledge, this is among the most sensitive levels of detection of NO2 to date.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Primary national ambient air quality standards for nitrogen dioxide; final rule,” Federal Register 75(26), 6474–6537(9 February 2010).
  2. United States Environmental Protection Agency, “National air quality status and trends through 2007,” EPA-454/R-08-006 (United States Environmental Protection Agency, 2008).
  3. J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
    [CrossRef]
  4. T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
    [CrossRef]
  5. G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).
  6. A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990).
    [CrossRef] [PubMed]
  7. A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
    [CrossRef]
  8. F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).
  9. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [CrossRef]
  10. G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50, A100–A115 (2011).
    [CrossRef] [PubMed]
  11. A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349(1999).
    [CrossRef]
  12. R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
    [CrossRef]
  13. J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910(2001).
    [CrossRef]
  14. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  15. G. N. Rao and A. Karpf, “High sensitivity detection of NO2 employing cavity ring-down spectroscopy and an external cavity continuously tunable quantum cascade laser,” Appl. Opt. 49, 4906–4914 (2010).
    [CrossRef] [PubMed]
  16. A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
    [CrossRef] [PubMed]
  17. A. Karpf and G. N. Rao, “Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines,” Appl. Opt. 49, 1406–1413 (2010).
    [CrossRef] [PubMed]
  18. J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.
  19. Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
    [CrossRef]
  20. M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
    [CrossRef]
  21. K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
    [CrossRef]
  22. J. M. Hollas, High Resolution Spectroscopy, 2nd ed. (Wiley, 1998).
  23. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
    [CrossRef]
  24. C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Ocean. Opt. 18, 685–695 (2005).
  25. National Aeronautic and Space Administration, “Earth fact sheet—terrestrial atmosphere,” http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html.
  26. E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85, 257–263(2006).
    [CrossRef]
  27. E. Burkhard and J. Schwab, “Ambient gaseous ammonia: evaluation of continuous measurement methods suitable for routine deployment—final report,” (New York State Energy Research and Development Authority, 2008).
  28. National Oceanic and Atmospheric Administration, “Average relative humidity,” http://lwf.ncdc.noaa.gov/oa/climate/online/ccd/avgrh.html.
  29. F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser,” Appl. Opt. 46, 907–915 (2007).
    [CrossRef] [PubMed]
  30. M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
    [CrossRef]

2011

2010

2009

A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
[CrossRef] [PubMed]

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

2007

2006

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85, 257–263(2006).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

2005

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Ocean. Opt. 18, 685–695 (2005).

2002

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

2001

2000

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

1999

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349(1999).
[CrossRef]

1998

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

1990

Allen, M. G.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Anderson, J. G.

Arnold, A.

Auwera, J. Vander

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Babikov, Y. L.

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Ocean. Opt. 18, 685–695 (2005).

Bakhirkin, Y.

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Bakhirkin, Y. A.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

Barbe, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Beck, M.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Becker, H.

Benner, D. C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Birk, M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Brown, L. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Burkhard, E.

E. Burkhard and J. Schwab, “Ambient gaseous ammonia: evaluation of continuous measurement methods suitable for routine deployment—final report,” (New York State Energy Research and Development Authority, 2008).

Busch, K. W.

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

Busch, M. A.

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Carleer, M. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Casa, G.

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85, 257–263(2006).
[CrossRef]

Chackerian, C.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Chance, K.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Coudert, L. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Dana, V.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Daube, B.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

De Tommasi, E.

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85, 257–263(2006).
[CrossRef]

Devi, V. M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Engeln, R.

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Faist, F.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

Faist, J.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Flaud, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Gamache, R. R.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Gianfrani, L.

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85, 257–263(2006).
[CrossRef]

Giovannini, M.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Goldman, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Golovko, V. F.

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Ocean. Opt. 18, 685–695 (2005).

Hartmann, J.-M.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Hemberger, R.

Hennequin, A.

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

Hentschel, W.

Herbst, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Herndon, S.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Hildenbrand, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Hofstetter, D.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Hollas, J. M.

J. M. Hollas, High Resolution Spectroscopy, 2nd ed. (Wiley, 1998).

Hvozdara, L.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

Jacquemart, D.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Jiménez, R.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Jucks, K. W.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Karpf, A.

Kawai, M.

Ketkar, S. N.

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

Ketterle, W.

Kollner, M.

Kort, E.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Kosterev, A.

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Lambrecht, A.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Lapson, L.

Lee, B.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Maki, A. G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Marhefka, K. L.

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

Massie, S. T.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Matsumi, Y.

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

McManus, J.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Meienburg, W.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Mikhailenko, C. N.

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Ocean. Opt. 18, 685–695 (2005).

Milanowicz, J. A.

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

Mitchell, G. M.

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

Monkhouse, P.

Neckel, H.

Nelson, D.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

O’Keefe, A.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349(1999).
[CrossRef]

Orphal, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Park, S.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Paul, J. B.

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Perrin, A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Peters, R.

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Peverall, R.

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Ragsdale, D. J.

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

Rao, G. N.

Rinsland, C. P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Risby, T. H.

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

Ritchie, G. A. D.

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

Rochat, M.

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Rosen, D. I.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Rothman, L. S.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Ryals, G. L.

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

Santoni, G.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Schafer, M.

Scherer, J. J.

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349(1999).
[CrossRef]

Schindler, K. P.

Schwab, J.

E. Burkhard and J. Schwab, “Ambient gaseous ammonia: evaluation of continuous measurement methods suitable for routine deployment—final report,” (New York State Energy Research and Development Authority, 2008).

Shorter, J.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Sick, V.

Silva, M. L.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Solga, S. F.

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

Sonnenfroh, D. M.

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

Suntz, R.

Takahashi, K.

Taketani, F.

Tennyson, J.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

Tolchenov, R. N.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Toth, R. A.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Van Helden, J. H.

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

Varanasi, P.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Vorsa, V.

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

Wagner, G.

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Wofsy, S.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Wolfrum, J.

Wöllenstein, J.

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Wood, E.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Yarekha, D. A.

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

Zahniser, M.

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

Appl. Opt.

A. Arnold, H. Becker, R. Hemberger, W. Hentschel, W. Ketterle, M. Kollner, W. Meienburg, P. Monkhouse, H. Neckel, M. Schafer, K. P. Schindler, V. Sick, R. Suntz, and J. Wolfrum, “Laser in situ monitoring of combustion processes,” Appl. Opt. 29, 4860–4872 (1990).
[CrossRef] [PubMed]

G. N. Rao and A. Karpf, “External cavity tunable quantum cascade lasers and their applications to trace gas monitoring,” Appl. Opt. 50, A100–A115 (2011).
[CrossRef] [PubMed]

J. B. Paul, L. Lapson, and J. G. Anderson, “Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment,” Appl. Opt. 40, 4904–4910(2001).
[CrossRef]

G. N. Rao and A. Karpf, “High sensitivity detection of NO2 employing cavity ring-down spectroscopy and an external cavity continuously tunable quantum cascade laser,” Appl. Opt. 49, 4906–4914 (2010).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy,” Appl. Opt. 48, 5061–5066 (2009).
[CrossRef] [PubMed]

A. Karpf and G. N. Rao, “Enhancement of trace gas detection by integrating wavelength modulated spectra across multiple lines,” Appl. Opt. 49, 1406–1413 (2010).
[CrossRef] [PubMed]

F. Taketani, M. Kawai, K. Takahashi, and Y. Matsumi, “Trace detection of atmospheric NO2 by laser-induced fluorescence using a GaN diode laser and a diode-pumped YAG laser,” Appl. Opt. 46, 907–915 (2007).
[CrossRef] [PubMed]

Appl. Phys. B

Y. A. Bakhirkin, A. A. Kosterev, R. F. Curl, F. K. Tittel, D. A. Yarekha, L. Hvozdara, M. Giovannini, and F. Faist, “Sub-ppbv nitric oxide concentration measurements using CW thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy,” Appl. Phys. B 82, 149–154(2006).
[CrossRef]

M. L. Silva, D. M. Sonnenfroh, D. I. Rosen, M. G. Allen, and A. O’Keefe, “Integrated cavity output spectroscopy measurements of nitric oxide levels in breath with a pulsed room-temperature quantum cascade laser,” Appl. Phys. B 81, 705–710 (2005).
[CrossRef]

E. De Tommasi, G. Casa, and L. Gianfrani, “High precision determinations of NH3 concentration by means of diode laser spectrometry at 2.005 μm,” Appl. Phys. B 85, 257–263(2006).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, M. Rochat, M. Beck, D. Hofstetter, and J. Faist, “Chemical sensing with pulsed QC-DFB lasers operating at 6.6 μm,” Appl. Phys. B 75, 351–357 (2002).
[CrossRef]

T. H. Risby and S. F. Solga, “Current status of clinical breath analysis,” Appl. Phys. B 85, 421–426 (2006).
[CrossRef]

Atmos. Ocean. Opt.

C. N. Mikhailenko, Y. L. Babikov, and V. F. Golovko, “Information-calculating system spectroscopy of atmospheric gases: the structure and main functions,” Atmos. Ocean. Opt. 18, 685–695 (2005).

Chem. Phys. Lett.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

A. O’Keefe, J. J. Scherer, and J. B. Paul, “CW integrated cavity output spectroscopy,” Chem. Phys. Lett. 307, 343–349(1999).
[CrossRef]

Federal Register

“Primary national ambient air quality standards for nitrogen dioxide; final rule,” Federal Register 75(26), 6474–6537(9 February 2010).

Int. Rev. Phys. Chem.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, L. H. Coudert, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, “The HITRAN 2004 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005).
[CrossRef]

Proc. SPIE

M. Zahniser, D. Nelson, J. McManus, S. Herndon, E. Wood, J. Shorter, B. Lee, G. Santoni, R. Jiménez, B. Daube, S. Park, E. Kort, and S. Wofsy, “Infrared QC laser applications to field measurements of atmospheric trace gas sources and sinks in environmental research: enhanced capabilities using continuous wave QCLs,” Proc. SPIE 7222, 72220H(2009).
[CrossRef]

J. Hildenbrand, J. Herbst, J. Wöllenstein, and A. Lambrecht, “Explosive detection using infrared laser spectroscopy,” Proc. SPIE 7222, 72220B (2009).
[CrossRef]

Rev. Laser Eng.

F. K. Tittel, Y. Bakhirkin, A. Kosterev, and G. Wysocki, “Recent advances in trace gas detection using quantum and interband cascade lasers,” Rev. Laser Eng. 34, 275–282 (2006).

Rev. Sci. Instrum.

R. Engeln, G. Berden, R. Peters, and G. Meijer, “Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy,” Rev. Sci. Instrum. 69, 3763–3769 (1998).
[CrossRef]

Other

J. H. Van Helden, R. Peverall, and G. A. D. Ritchie, “Cavity enhanced techniques using continuous wave lasers,” in Cavity Ring-Down Spectroscopy, G.Berden and R.Engeln, eds. (Wiley, 2009), pp. 27–56.

United States Environmental Protection Agency, “National air quality status and trends through 2007,” EPA-454/R-08-006 (United States Environmental Protection Agency, 2008).

G. M. Mitchell, V. Vorsa, G. L. Ryals, J. A. Milanowicz, D. J. Ragsdale, K. L. Marhefka, and S. N. Ketkar, “Trace impurity detection in ammonia for the compound semiconductor market,” presented at the SEMI Technical Symposium: Innovations in Semiconductor Manufacturing, Semicon West, San Francisco, California, USA (17–21 July 2002).

National Aeronautic and Space Administration, “Earth fact sheet—terrestrial atmosphere,” http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html.

E. Burkhard and J. Schwab, “Ambient gaseous ammonia: evaluation of continuous measurement methods suitable for routine deployment—final report,” (New York State Energy Research and Development Authority, 2008).

National Oceanic and Atmospheric Administration, “Average relative humidity,” http://lwf.ncdc.noaa.gov/oa/climate/online/ccd/avgrh.html.

K. W. Busch, A. Hennequin, and M. A. Busch, “Introduction to optical cavities,” in Cavity Ringdown Spectroscopy, K.W.Busch and M.A.Busch, eds. (American Chemical Society, 1999), pp. 20–33.
[CrossRef]

J. M. Hollas, High Resolution Spectroscopy, 2nd ed. (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup used for multiple-line integrated absorption spectroscopy employing ICOS for the trace detection of NO 2 .

Fig. 2
Fig. 2

Simulated absorption spectrum of NO 2 ( 500 ppb concentration, 2000 m path length, pressure = 1000 mbars ) covering the 1655.3 cm 1 to 1657.3 cm 1 region. Included in this figure is a “stick” spectrum identifying the individual transitions (and their relative strengths) that lead to the absorption spectrum. It should be noted that transitions that appear to be represented by dark bars are actually very closely spaced doublets.

Fig. 3
Fig. 3

Simulated H 2 O and NO 2 spectra (at 1000 mbars ) in the range 1652 cm 1 to 1664 cm 1 . To facilitate seeing the weak NO 2 lines in this region and comparing their positions to that of the H 2 O lines, a simulated NO 2 concentration of 5 ppm and a path length of 1000 m were used (this path length is of the order of the effective path length of the CRD cell used in reported work). The H 2 O spectrum was generated to match typical conditions in the midlatitude United States during the winter months (the time period during which the reported data were recorded) over a 1 m path (corresponding to the path length from the QCL to the CRD cell). This spectrum was used to select a region with a dense NO 2 spectrum that was free from interference due to water lines. The region used for the reported work (between 1655.3 cm 1 and 1657.3 cm 1 ) is highlighted in the chart with a white background.

Fig. 4
Fig. 4

(a) Total integrated absorption signal versus concentration plot. The expected linear relationship between the multiple-line integrated absorption signals versus concentrations is clearly seen. (b) An expanded scale of the low-concentration region is employed to clearly display the low-concentration data points.

Tables (2)

Tables Icon

Table 1 Spectral Line Parameters from HITRAN [23] for the Major NO 2 Doublets That Are Responsible for the Peak Absorption in the R Branch

Tables Icon

Table 2 Spectral Line Parameters from HITRAN [23] for the Strongest NO 2 Doublets in the Target Region (between 1655.3 cm 1 and 1657.3 cm 1 )

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

0 ( 1 L R 1 ) ( 1 L R 2 ) < 1 ,
I = I 0 C p T 2 ( 1 R ) ,
R = R e α ( ν ) L ,
Δ I I 0 = GA 1 + GA ,
I 0 ( ν ) I ( ν ) I 0 ( ν ) = α ( ν ) L ( 1 R ) .
I ( ν ) = I 0 ( ν ) e α ( ν ) L ,
I ( ν ) = I 0 ( ν ) [ 1 α ( ν ) L ] .
S = α ( ν ) L d ν .
S T = i α i ( ν ) L d ν .
τ 0 = L c ( 1 R ) ,

Metrics