Abstract

We discuss the design and performance of an airborne (underwing) in-line digital holographic imaging system developed for characterizing atmospheric cloud water droplets and ice particles in situ. The airborne environment constrained the design space to the simple optical layout that in-line non-beam-splitting holography affords. The desired measurement required the largest possible sample volume in which the smallest desired particle size (∼5 μm) could still be resolved, and consequently the magnification requirement was driven by the pixel size of the camera and this particle size. The resulting design was a seven-element, double-telecentric, high-precision optical imaging system used to relay and magnify a hologram onto a CCD surface. The system was designed to preserve performance and high resolution over a wide temperature range. Details of the optical design and construction are given. Experimental results demonstrate that the system is capable of recording holograms that can be reconstructed with resolution of better than 6.5 μm within a 15 cm3 sample volume.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef]
  2. P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
    [CrossRef]
  3. J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).
  4. A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
    [CrossRef]
  5. R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
    [CrossRef]
  6. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
    [CrossRef]
  7. S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
    [CrossRef]
  8. S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
    [CrossRef]
  9. P. Amsler, O. Stetzer, M. Schnaiter, E. Hesse, S. Benz, O. Moehler, and U. Lohmann, “Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements,” Appl. Opt. 48, 5811–5822 (2009).
    [CrossRef]
  10. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
    [CrossRef]
  11. I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
    [CrossRef]
  12. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
    [CrossRef]
  13. H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
    [CrossRef]
  14. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
    [CrossRef]
  15. J. Upatnieks, A. V. Lugt, and E. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593(1966).
    [CrossRef]
  16. G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
    [CrossRef]
  17. R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
    [CrossRef]
  18. R. A. Briones, L. Heflinger, and R. F. Wuerker, “Holographic microscopy,” Appl. Opt. 17, 944–950 (1978).
    [CrossRef]
  19. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef]
  20. Y. S. Lan and C. M. Lin, “Design of a relay lens with telecentricity in a holographic recording system,” Appl. Opt. 48, 3391–3395 (2009).
    [CrossRef]
  21. P. R. Yoder, Mounting Lenses in Optical Instruments (SPIE Optical Engineering Press, 1995), Vol.  TT21.
  22. J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
    [CrossRef]

2009 (4)

S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
[CrossRef]

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Y. S. Lan and C. M. Lin, “Design of a relay lens with telecentricity in a holographic recording system,” Appl. Opt. 48, 3391–3395 (2009).
[CrossRef]

P. Amsler, O. Stetzer, M. Schnaiter, E. Hesse, S. Benz, O. Moehler, and U. Lohmann, “Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements,” Appl. Opt. 48, 5811–5822 (2009).
[CrossRef]

2008 (1)

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

2006 (3)

2004 (2)

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

2003 (1)

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

2002 (1)

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

1995 (2)

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef]

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

1989 (1)

P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
[CrossRef]

1984 (1)

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

1978 (1)

1976 (1)

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

1975 (1)

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).

1966 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Amsler, P.

Aspert, N.

Benz, S.

Borrman, S.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Briones, R. A.

Brown, P. R.

P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
[CrossRef]

Capelle, G. A.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Charrière, F.

Colomb, T.

Cormack, R. H.

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

Cox, B. C.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Cuche, E.

Curtius, J.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Depeursinge, C.

Frogget, B. C.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Fugal, J. P.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Grover, M.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Haman, K.

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Heflinger, L.

Hesse, E.

Hinsch, K. D.

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

Hussain, F.

Kato, J.-I.

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

Katz, J.

Kaufman, M. I.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Kozikowska, A.

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Kühn, J.

Lan, Y. S.

Lawson, R. P.

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

Leith, E.

Lin, C. M.

Lohmann, U.

Lugt, A. V.

Malkiel, E.

Malone, R. M.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Marquet, P.

Matsuzaki, H.

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef]

Moehler, O.

Montfort, F.

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Pazuchanics, P.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Raupach, S.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Raupach, S. M. F.

S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
[CrossRef]

Saw, E. W.

Schnaiter, M.

Schulz, T. J.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Sergeyev, A. V.

Shaw, R. A.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef]

Sheng, J.

Sorenson, D. S.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Stetzer, O.

Stevens, G. D.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Supronowicz, J.

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Thompson, B. J.

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

Tibbitts, A.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Trolinger, J. D.

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).

Turley, W. D.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Tyler, G. A.

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

Upatnieks, J.

Vossing, H.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Wuerker, R. F.

Yamaguchi, I.

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

Yoder, P. R.

P. R. Yoder, Mounting Lenses in Optical Instruments (SPIE Optical Engineering Press, 1995), Vol.  TT21.

Appl. Opt. (8)

Atmos. Res. (1)

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
[CrossRef]

S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
[CrossRef]

J. Mod. Opt. (1)

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Meas. Sci. Technol. (3)

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef]

Opt. Eng. (2)

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).

Proc. SPIE (1)

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Other (1)

P. R. Yoder, Mounting Lenses in Optical Instruments (SPIE Optical Engineering Press, 1995), Vol.  TT21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics