Abstract

We discuss the design and performance of an airborne (underwing) in-line digital holographic imaging system developed for characterizing atmospheric cloud water droplets and ice particles in situ. The airborne environment constrained the design space to the simple optical layout that in-line non-beam- splitting holography affords. The desired measurement required the largest possible sample volume in which the smallest desired particle size (5μm) could still be resolved, and consequently the magnification requirement was driven by the pixel size of the camera and this particle size. The resulting design was a seven-element, double-telecentric, high-precision optical imaging system used to relay and magnify a hologram onto a CCD surface. The system was designed to preserve performance and high resolution over a wide temperature range. Details of the optical design and construction are given. Experimental results demonstrate that the system is capable of recording holograms that can be reconstructed with resolution of better than 6.5μm within a 15cm3 sample volume.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef] [PubMed]
  2. P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
    [CrossRef]
  3. J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).
  4. A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
    [CrossRef]
  5. R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
    [CrossRef]
  6. J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
    [CrossRef] [PubMed]
  7. S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
    [CrossRef]
  8. S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
    [CrossRef]
  9. P. Amsler, O. Stetzer, M. Schnaiter, E. Hesse, S. Benz, O. Moehler, and U. Lohmann, “Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements,” Appl. Opt. 48, 5811–5822 (2009).
    [CrossRef] [PubMed]
  10. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
    [CrossRef]
  11. I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
    [CrossRef]
  12. K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
    [CrossRef]
  13. H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
    [CrossRef] [PubMed]
  14. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
    [CrossRef] [PubMed]
  15. J. Upatnieks, A. V. Lugt, and E. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593(1966).
    [CrossRef] [PubMed]
  16. G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
    [CrossRef]
  17. R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
    [CrossRef]
  18. R. A. Briones, L. Heflinger, and R. F. Wuerker, “Holographic microscopy,” Appl. Opt. 17, 944–950 (1978).
    [CrossRef] [PubMed]
  19. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
    [CrossRef] [PubMed]
  20. Y. S. Lan and C. M. Lin, “Design of a relay lens with telecentricity in a holographic recording system,” Appl. Opt. 48, 3391–3395 (2009).
    [CrossRef] [PubMed]
  21. P. R. Yoder, Mounting Lenses in Optical Instruments (SPIE Optical Engineering Press, 1995), Vol.  TT21.
  22. J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
    [CrossRef]

2009 (4)

S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
[CrossRef]

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Y. S. Lan and C. M. Lin, “Design of a relay lens with telecentricity in a holographic recording system,” Appl. Opt. 48, 3391–3395 (2009).
[CrossRef] [PubMed]

P. Amsler, O. Stetzer, M. Schnaiter, E. Hesse, S. Benz, O. Moehler, and U. Lohmann, “Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements,” Appl. Opt. 48, 5811–5822 (2009).
[CrossRef] [PubMed]

2008 (1)

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

2006 (3)

2004 (2)

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef] [PubMed]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

2003 (1)

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

2002 (1)

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

1995 (2)

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef] [PubMed]

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

1989 (1)

P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
[CrossRef]

1984 (1)

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

1978 (1)

1976 (1)

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

1975 (1)

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).

1966 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Amsler, P.

Aspert, N.

Benz, S.

Borrman, S.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Briones, R. A.

Brown, P. R.

P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
[CrossRef]

Capelle, G. A.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Charrière, F.

Colomb, T.

Cormack, R. H.

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

Cox, B. C.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Cuche, E.

Curtius, J.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Depeursinge, C.

Frogget, B. C.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Fugal, J. P.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef] [PubMed]

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Grover, M.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Haman, K.

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Heflinger, L.

Hesse, E.

Hinsch, K. D.

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

Hussain, F.

Kato, J.-I.

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

Katz, J.

Kaufman, M. I.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Kozikowska, A.

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Kühn, J.

Lan, Y. S.

Lawson, R. P.

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

Leith, E.

Lin, C. M.

Lohmann, U.

Lugt, A. V.

Malkiel, E.

Malone, R. M.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Marquet, P.

Matsuzaki, H.

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef] [PubMed]

Moehler, O.

Montfort, F.

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Pazuchanics, P.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Raupach, S.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Raupach, S. M. F.

S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
[CrossRef]

Saw, E. W.

Schnaiter, M.

Schulz, T. J.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

Sergeyev, A. V.

Shaw, R. A.

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef] [PubMed]

Sheng, J.

Sorenson, D. S.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Stetzer, O.

Stevens, G. D.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Supronowicz, J.

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Thompson, B. J.

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

Tibbitts, A.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Trolinger, J. D.

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).

Turley, W. D.

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Tyler, G. A.

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

Upatnieks, J.

Vossing, H.

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Wuerker, R. F.

Yamaguchi, I.

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

Yoder, P. R.

P. R. Yoder, Mounting Lenses in Optical Instruments (SPIE Optical Engineering Press, 1995), Vol.  TT21.

Appl. Opt. (8)

J. Upatnieks, A. V. Lugt, and E. Leith, “Correction of lens aberrations by means of holograms,” Appl. Opt. 5, 589–593(1966).
[CrossRef] [PubMed]

R. A. Briones, L. Heflinger, and R. F. Wuerker, “Holographic microscopy,” Appl. Opt. 17, 944–950 (1978).
[CrossRef] [PubMed]

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef] [PubMed]

J. P. Fugal, R. A. Shaw, E. W. Saw, and A. V. Sergeyev, “Airborne digital holographic system for cloud particle measurements,” Appl. Opt. 43, 5987–5995 (2004).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851–863 (2006).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893–3901 (2006).
[CrossRef] [PubMed]

Y. S. Lan and C. M. Lin, “Design of a relay lens with telecentricity in a holographic recording system,” Appl. Opt. 48, 3391–3395 (2009).
[CrossRef] [PubMed]

P. Amsler, O. Stetzer, M. Schnaiter, E. Hesse, S. Benz, O. Moehler, and U. Lohmann, “Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements,” Appl. Opt. 48, 5811–5822 (2009).
[CrossRef] [PubMed]

Atmos. Res. (1)

R. P. Lawson and R. H. Cormack, “Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research,” Atmos. Res. 35, 315–348 (1995).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

P. R. Brown, “Use of holography for airborne cloud physics measurements,” J. Atmos. Ocean. Technol. 6, 293–306 (1989).
[CrossRef]

S. M. F. Raupach, “Observation of interference patterns in reconstructed digital holograms of atmospheric ice crystals,” J. Atmos. Ocean. Technol. 26, 2691–2693 (2009).
[CrossRef]

J. Mod. Opt. (1)

G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis: a reassessment,” J. Mod. Opt. 23, 685–700 (1976).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Raupach, H. Vossing, J. Curtius, and S. Borrman, “Digital crossed-beam holography for in situ imaging of atmospheric particles,” J. Opt. A: Pure Appl. Opt. 8, 796–806 (2006).
[CrossRef]

Meas. Sci. Technol. (3)

J. P. Fugal, T. J. Schulz, and R. A. Shaw, “Practical methods for automated reconstruction and characterization of particles in digital in-line holograms,” Meas. Sci. Technol. 20, 075501(2009).
[CrossRef]

K. D. Hinsch, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Opt. Eng. (2)

I. Yamaguchi, J.-I. Kato, and H. Matsuzaki, “Measurement of surface shape and deformation by phase-shifting image digital holography,” Opt. Eng. 42, 1267–1271 (2003).
[CrossRef]

J. D. Trolinger, “Particle field holography,” Opt. Eng. 14, 383–392 (1975).

Proc. SPIE (1)

R. M. Malone, G. A. Capelle, B. C. Cox, B. C. Frogget, M. Grover, M. I. Kaufman, P. Pazuchanics, D. S. Sorenson, G. D. Stevens, A. Tibbitts, and W. D. Turley, “High-resolution UV relay lens for particle size distribution measurements using holography,” Proc. SPIE 7060, 70600A(2008).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

A. Kozikowska, K. Haman, and J. Supronowicz, “Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method,” Q. J. R. Meteorol. Soc. 110, 65–73 (1984).
[CrossRef]

Other (1)

P. R. Yoder, Mounting Lenses in Optical Instruments (SPIE Optical Engineering Press, 1995), Vol.  TT21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simple in-line hologram. Reference plane wave illuminates an object field—in this case, single particle located at z from an image plane. Diffracted light from particle and reference wave interfere at image plane. Hologram, which is the interference pattern, contains all necessary information required to reconstruct 2D size and 3D location of particle.

Fig. 2
Fig. 2

Details of seven-element imaging lens designed to relay 355 nm wavelength hologram and provide 2.5 × magnification. Beam travels left to right.

Fig. 3
Fig. 3

Semitransparent exploded view of lens solid model. Each element is mounted in a “poker chip” subcell. Lens elements 1 to 4 are smaller and stacked into left side of lens tube. Larger elements 5 to 7 are stacked into tube from opposite end. Proper lens spacing was obtained with spacers made of same material as subcells and lens tube.

Fig. 4
Fig. 4

Experimental layout used to test in-line holographic imaging system.

Fig. 5
Fig. 5

Conventional image of USAF 1951 resolution target obtained with assembled lens system. Right image has black and white threshold filter applied to help identify resolution limit. Last horizontal and vertical line-pair with all three bars distinguishable is group 7, element 3, which has a bar size of 3.1 μm .

Fig. 6
Fig. 6

Conventional image of resolution target used for volume tests. Four smallest sections of pattern used in resolution analysis are identified by white boxes, and radial distance from target center is labeled.

Fig. 7
Fig. 7

Reconstructed hologram of resolution target under worst-case test conditions. Right image has black and white threshold filter applied to help identify resolution limit. Target was positioned 152 mm from object plane, and image is zoomed in to show test pattern at 7.3 mm radial distance from target center. Last horizontal and vertical line-pair with all three bars distinguishable is group 6, element 3, which has a bar width of 6.2 μm .

Fig. 8
Fig. 8

Reconstructed resolution as a function of target distance from hologram real image (or conjugate image). Smallest resolvable feature size in reconstructed hologram was measured at four radial locations on the target. Radial distance from target center is shown in legend.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

z max = ( D a p D p ) / ( 2.44 λ ) ,
M 2 D pixel D p ,
NA 1.22 λ D p ,

Metrics