Abstract

We have realized an electric field controlled Bragg diffraction optical beam splitter based on a photorefractive Bragg diffraction grating. In our experiments, the splitter was produced by wave coupling (532.0nm) with a potassium lithium tantalate niobate single crystal. In the process of splitting, the incident beam could be split into multioutput beams by the splitter. The influence of an externally applied electric field was studied, and the results show that the intensity of the Bragg diffraction could be controlled by the electric field. The polarization properties of the splitter are discussed.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Suleski and D. C. O’Shea, “Gray-scale masks for diffractive-optics fabrication: I. Commercial slide imagers,” Appl. Opt. 34, 7507–7517 (1995).
    [CrossRef] [PubMed]
  2. R. S. Denis, N. Passilly, M. Laroche, T. Mohammed-Brahim, and K. Aït-Ameur, “Beam-shaping longitudinal range of a binary diffractive optical element,” Appl. Opt. 45, 8136–8141(2006).
    [CrossRef]
  3. B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat, J. Krupnik, and D. Sadot, “Free-space optical cross-connect switch by use of electroholography,” Appl. Opt. 39, 746–758 (2000).
    [CrossRef]
  4. A. J. Agranat, “Optical lambda-switching at telecom wavelengths based on electroholography,” Top. Appl. Phys. 86, 133–161 (2003).
    [CrossRef]
  5. A. Bitman, N. Sapiens, L. Secundo, and A. J. Agranat, “Electroholographic tunable volume grating in the g44 configuration,” Opt. Lett. 31, 2849–2851 (2006).
    [CrossRef] [PubMed]
  6. H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
    [CrossRef]
  7. A. J. Agranat, C. E. M. de Oliveira, and G. Orr, “Dielectric electrooptic gratings in potassium lithium tantalate niobate,” J. Non-Cryst. Solids 353, 4405–4410 (2007).
    [CrossRef]
  8. N. Sapiens, A. Weissbrod, and A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353–355 (2009);
    [CrossRef] [PubMed]
  9. H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
    [CrossRef]
  10. H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008).
    [CrossRef]
  11. A. J. Agranat, M. Razvag, and M. Balberg, “Photorefractive hologram fixing by a 4 K cooldown to the phase transition in K1−xLixTa1−yNbyO3,” Appl. Phys. Lett. 68, 2469–2471(1996).
    [CrossRef]
  12. M. Ivker and A. J. Agranat, “Rapid grating compensation in iron-doped paraelectric KLTN,” in Photorefractive Effects, Materials, and Devices, G.Salamo and A.Siahmakoun, eds., Vol. 62 of OSA Trends Optics Photonics (Optical Society of America, 2001), paper 107.
  13. B. Pesach, E. Refaeli, and A. J. Agranat, “Investigation of the holographic storage capacity of paraelectric K1−xLixTa1−yNbyO3:Cu,V,” Opt. Lett. 23, 642–644 (1998).
    [CrossRef]
  14. A. J. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−xNbxO3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989).
    [CrossRef] [PubMed]
  15. Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
    [CrossRef]
  16. R. Hofmeister, A. Yariv, and A. J. Agranat, “Growth and characterization of the perovskite K1−yLiyTa1−xNbxO3:Cu,” J. Cryst. Growth. 131, 486–494 (1993).
    [CrossRef]
  17. X. Tong, R. Hofmeister, M. Zhang, and A. Yariv, “Fixing of volume holograms in ferroelectric K1−yLiyTa1−xNbxO3,” Opt. Lett. 21, 1860–1862 (1996).
    [CrossRef] [PubMed]
  18. V. Leyva, A. J. Agranat, and A. Yariv, “Fixing of a photorefractive grating in KTa1−xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556(1991).
    [CrossRef] [PubMed]
  19. V. Leyva, D. Engin, X. Tong, M. Tong, A. Yariv, and A. J. Agranat, “Fixing of photorefractive volume holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20, 1319–1321 (1995).
    [CrossRef] [PubMed]

2009

2008

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008).
[CrossRef]

H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
[CrossRef]

2007

A. J. Agranat, C. E. M. de Oliveira, and G. Orr, “Dielectric electrooptic gratings in potassium lithium tantalate niobate,” J. Non-Cryst. Solids 353, 4405–4410 (2007).
[CrossRef]

2006

2003

A. J. Agranat, “Optical lambda-switching at telecom wavelengths based on electroholography,” Top. Appl. Phys. 86, 133–161 (2003).
[CrossRef]

2000

1998

1996

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

X. Tong, R. Hofmeister, M. Zhang, and A. Yariv, “Fixing of volume holograms in ferroelectric K1−yLiyTa1−xNbxO3,” Opt. Lett. 21, 1860–1862 (1996).
[CrossRef] [PubMed]

A. J. Agranat, M. Razvag, and M. Balberg, “Photorefractive hologram fixing by a 4 K cooldown to the phase transition in K1−xLixTa1−yNbyO3,” Appl. Phys. Lett. 68, 2469–2471(1996).
[CrossRef]

1995

1993

R. Hofmeister, A. Yariv, and A. J. Agranat, “Growth and characterization of the perovskite K1−yLiyTa1−xNbxO3:Cu,” J. Cryst. Growth. 131, 486–494 (1993).
[CrossRef]

1991

1989

Agranat, A. J.

N. Sapiens, A. Weissbrod, and A. J. Agranat, “Fast electroholographic switching,” Opt. Lett. 34, 353–355 (2009);
[CrossRef] [PubMed]

A. J. Agranat, C. E. M. de Oliveira, and G. Orr, “Dielectric electrooptic gratings in potassium lithium tantalate niobate,” J. Non-Cryst. Solids 353, 4405–4410 (2007).
[CrossRef]

A. Bitman, N. Sapiens, L. Secundo, and A. J. Agranat, “Electroholographic tunable volume grating in the g44 configuration,” Opt. Lett. 31, 2849–2851 (2006).
[CrossRef] [PubMed]

A. J. Agranat, “Optical lambda-switching at telecom wavelengths based on electroholography,” Top. Appl. Phys. 86, 133–161 (2003).
[CrossRef]

B. Pesach, G. Bartal, E. Refaeli, A. J. Agranat, J. Krupnik, and D. Sadot, “Free-space optical cross-connect switch by use of electroholography,” Appl. Opt. 39, 746–758 (2000).
[CrossRef]

B. Pesach, E. Refaeli, and A. J. Agranat, “Investigation of the holographic storage capacity of paraelectric K1−xLixTa1−yNbyO3:Cu,V,” Opt. Lett. 23, 642–644 (1998).
[CrossRef]

A. J. Agranat, M. Razvag, and M. Balberg, “Photorefractive hologram fixing by a 4 K cooldown to the phase transition in K1−xLixTa1−yNbyO3,” Appl. Phys. Lett. 68, 2469–2471(1996).
[CrossRef]

V. Leyva, D. Engin, X. Tong, M. Tong, A. Yariv, and A. J. Agranat, “Fixing of photorefractive volume holograms in K1−yLiyTa1−xO3,” Opt. Lett. 20, 1319–1321 (1995).
[CrossRef] [PubMed]

R. Hofmeister, A. Yariv, and A. J. Agranat, “Growth and characterization of the perovskite K1−yLiyTa1−xNbxO3:Cu,” J. Cryst. Growth. 131, 486–494 (1993).
[CrossRef]

V. Leyva, A. J. Agranat, and A. Yariv, “Fixing of a photorefractive grating in KTa1−xNbxO3 by cooling through the ferroelectric phase transition,” Opt. Lett. 16, 554–556(1991).
[CrossRef] [PubMed]

A. J. Agranat, V. Leyva, and A. Yariv, “Voltage-controlled photorefractive effect in paraelectric KTa1−xNbxO3:Cu,V,” Opt. Lett. 14, 1017–1019 (1989).
[CrossRef] [PubMed]

M. Ivker and A. J. Agranat, “Rapid grating compensation in iron-doped paraelectric KLTN,” in Photorefractive Effects, Materials, and Devices, G.Salamo and A.Siahmakoun, eds., Vol. 62 of OSA Trends Optics Photonics (Optical Society of America, 2001), paper 107.

Aït-Ameur, K.

Balberg, M.

A. J. Agranat, M. Razvag, and M. Balberg, “Photorefractive hologram fixing by a 4 K cooldown to the phase transition in K1−xLixTa1−yNbyO3,” Appl. Phys. Lett. 68, 2469–2471(1996).
[CrossRef]

Bartal, G.

Bitman, A.

de Oliveira, C. E. M.

A. J. Agranat, C. E. M. de Oliveira, and G. Orr, “Dielectric electrooptic gratings in potassium lithium tantalate niobate,” J. Non-Cryst. Solids 353, 4405–4410 (2007).
[CrossRef]

Denis, R. S.

Engin, D.

Fukuda, T.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Furukawa, Y.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Gong, D.

H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008).
[CrossRef]

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

Hofmeister, R.

X. Tong, R. Hofmeister, M. Zhang, and A. Yariv, “Fixing of volume holograms in ferroelectric K1−yLiyTa1−xNbxO3,” Opt. Lett. 21, 1860–1862 (1996).
[CrossRef] [PubMed]

R. Hofmeister, A. Yariv, and A. J. Agranat, “Growth and characterization of the perovskite K1−yLiyTa1−xNbxO3:Cu,” J. Cryst. Growth. 131, 486–494 (1993).
[CrossRef]

Hou, C.

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

Ivker, M.

M. Ivker and A. J. Agranat, “Rapid grating compensation in iron-doped paraelectric KLTN,” in Photorefractive Effects, Materials, and Devices, G.Salamo and A.Siahmakoun, eds., Vol. 62 of OSA Trends Optics Photonics (Optical Society of America, 2001), paper 107.

Kitayama, H.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Krupnik, J.

Laroche, M.

Leyva, V.

Li, L.

H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
[CrossRef]

Liu, D.

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
[CrossRef]

Makio, S.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Miyai, T.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Mohammed-Brahim, T.

O’Shea, D. C.

Orr, G.

A. J. Agranat, C. E. M. de Oliveira, and G. Orr, “Dielectric electrooptic gratings in potassium lithium tantalate niobate,” J. Non-Cryst. Solids 353, 4405–4410 (2007).
[CrossRef]

Passilly, N.

Pesach, B.

Razvag, M.

A. J. Agranat, M. Razvag, and M. Balberg, “Photorefractive hologram fixing by a 4 K cooldown to the phase transition in K1−xLixTa1−yNbyO3,” Appl. Phys. Lett. 68, 2469–2471(1996).
[CrossRef]

Refaeli, E.

Sadot, D.

Sapiens, N.

Sato, M.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Secundo, L.

Suleski, T. J.

Tamiuchi, T.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Tian, H.

H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
[CrossRef]

H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008).
[CrossRef]

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

Tong, M.

Tong, X.

Urata, Y.

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

Wang, H.

H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008).
[CrossRef]

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

Weissbrod, A.

Yariv, A.

Zhang, M.

H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
[CrossRef]

X. Tong, R. Hofmeister, M. Zhang, and A. Yariv, “Fixing of volume holograms in ferroelectric K1−yLiyTa1−xNbxO3,” Opt. Lett. 21, 1860–1862 (1996).
[CrossRef] [PubMed]

Zhou, Z.

H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
[CrossRef]

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. J. Agranat, M. Razvag, and M. Balberg, “Photorefractive hologram fixing by a 4 K cooldown to the phase transition in K1−xLixTa1−yNbyO3,” Appl. Phys. Lett. 68, 2469–2471(1996).
[CrossRef]

Y. Furukawa, S. Makio, T. Miyai, M. Sato, H. Kitayama, Y. Urata, T. Tamiuchi, and T. Fukuda, “Growth and characterization of K3Li2(TaxNb1−x)5O15 crystals for blue second‐harmonic‐generation applications,” Appl. Phys. Lett. 68, 744–746 (1996).
[CrossRef]

J. Cryst. Growth.

R. Hofmeister, A. Yariv, and A. J. Agranat, “Growth and characterization of the perovskite K1−yLiyTa1−xNbxO3:Cu,” J. Cryst. Growth. 131, 486–494 (1993).
[CrossRef]

J. Non-Cryst. Solids

A. J. Agranat, C. E. M. de Oliveira, and G. Orr, “Dielectric electrooptic gratings in potassium lithium tantalate niobate,” J. Non-Cryst. Solids 353, 4405–4410 (2007).
[CrossRef]

J. Phys. D

H. Tian, Z. Zhou, D. Gong, H. Wang, D. Liu, and C. Hou, “Enhanced photorefractive properties of paraelectric potassium–lithium–tantalate–niobate by manganese doping,” J. Phys. D 41, 095105 (2008).
[CrossRef]

Opt. Commun.

H. Tian, Z. Zhou, D. Gong, and H. Wang, “Photorefractive properties of paraelectric potassium lithium tantalate niobate crystal doped with iron,” Opt. Commun. 281, 1720–1724(2008).
[CrossRef]

H. Tian, Z. Zhou, M. Zhang, D. Liu, and L. Li, “Kerr property of cubic K0.95Li0.05Ta0.60Nb0.40O3 single crystal,” Opt. Commun. 281, 5420–5422 (2008).
[CrossRef]

Opt. Lett.

Top. Appl. Phys.

A. J. Agranat, “Optical lambda-switching at telecom wavelengths based on electroholography,” Top. Appl. Phys. 86, 133–161 (2003).
[CrossRef]

Other

M. Ivker and A. J. Agranat, “Rapid grating compensation in iron-doped paraelectric KLTN,” in Photorefractive Effects, Materials, and Devices, G.Salamo and A.Siahmakoun, eds., Vol. 62 of OSA Trends Optics Photonics (Optical Society of America, 2001), paper 107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Dependence of the dielectric constant on temperature.

Fig. 2
Fig. 2

Two-wave coupling setup for diffraction efficiency: M, mirror; BS, beam splitter.

Fig. 3
Fig. 3

Diffraction efficiency versus crossing angle.

Fig. 4
Fig. 4

Experimental layout for production of the Bragg diffraction optical beam splitter.

Fig. 5
Fig. 5

Beam splitting of the first splitter production method with the electric field (a) turned on and (b) turned off.

Fig. 6
Fig. 6

Beam splitting of the second splitter production method with the electric field (a) turned on and (b) turned off.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ n = 1 2 n 0 3 g eff ε 0 2 ( ε r 1 ) 2 ( E 0 2 + 2 E 0 E sc + E sc 2 ) ,
Δ n = { Δ n ( E 0 ) when     E 0 0 0 when     E 0 = 0 .
Δ n 1 = n 0 3 g 12 ε 0 2 ( ε r 1 ) 2 E 0 E sc ,
Δ n 3 = n 0 3 ( g 12 cos 2 θ + g 12 sin 2 θ ) ε 0 2 ( ε r 1 ) 2 E 0 E sc ,
η = exp ( α l cos θ ) sin 2 [ π l λ n 0 3 g 12 E sc E 0 ] ,
η = exp ( α l cos θ ) sin 2 [ π l λ n 0 3 ( g 12 cos 2 θ + g 12 sin 2 θ ) E sc E 0 ] .

Metrics