Abstract

No abstract available.

Full Article  |  PDF Article
OSA Recommended Articles
The Optical Convolution of Time Functions

C. S. Weaver, S. D. Ramsey, J. W. Goodman, and A. M. Rosie
Appl. Opt. 9(7) 1672-1682 (1970)

Unconstrained single deblurring filter made from blurred PSF and doubly blurred PSF

Jae Cheol Jo and Sang Soo Lee
Appl. Opt. 22(1) 125-129 (1983)

Analysis of double-exposure speckle photography with two-beam illumination

Karl A. Stetson
J. Opt. Soc. Am. 64(6) 857-861 (1974)

References

  • View by:
  • |
  • |
  • |

  1. A. Vander Lugt, IEEE Trans. IT-10, 139 (1964).

1964 (1)

A. Vander Lugt, IEEE Trans. IT-10, 139 (1964).

Vander Lugt, A.

A. Vander Lugt, IEEE Trans. IT-10, 139 (1964).

IEEE Trans. (1)

A. Vander Lugt, IEEE Trans. IT-10, 139 (1964).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

A system for optically convolving two functions.

Fig. 2
Fig. 2

An alternate system for convolving two functions.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ = 2 ( λ f / X ) ,
F { f ( x , y + y 1 ) + g ( - x , - y + y 2 ) } = F ( f 1 f 2 ) exp ( j 2 π f 2 y 1 ) + G * ( f 1 f 2 ) exp ( - j 2 π f 2 y 2 ) ,
F ( f 1 f 2 ) exp ( j 2 π f 2 y 1 ) + G * ( f 1 f 2 ) exp ( - j 2 π f 2 y 2 ) ) 2 = F ( f 1 f 2 ) G ( f 1 f 2 ) × exp [ j 2 π f 2 ( y 1 + y 2 ) ] + F * ( f 1 f 2 ) G * ( f 1 f 2 ) exp [ - j 2 π f 2 ( y 1 + y 2 ) ] + F ( f 1 f 2 ) 2 + G ( f 1 f 2 ) 2
θ > ( 3 / 2 ) ( L / f ) ,

Metrics