Abstract

We propose a novel highly birefringent photonic crystal fiber (PCF) based on a double-hole unit. Because of the effect of the double-hole unit in which double airholes can be effectively viewed as elliptical airholes, the proposed PCF can achieve birefringence similar to that of an elliptical-hole PCF with high birefringence even up to the order of 0.01 and still avoid the inherent challenge to fabricate an elliptical-hole PCF. The proposed PCF also has a lower confinement loss than an elliptical-hole PCF with the same air-filling fraction.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  2. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
    [CrossRef]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
    [CrossRef] [PubMed]
  4. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851(2003).
    [CrossRef] [PubMed]
  5. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327(2000).
    [CrossRef]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  7. A. Ferrando, E. Silvestre, J. J. Miret, and Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
    [CrossRef]
  8. J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15, 15365-15376(2007).
    [CrossRef] [PubMed]
  9. S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
    [CrossRef]
  10. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  11. H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657-658 (2004).
    [CrossRef]
  12. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113-151115 (2007).
    [CrossRef]
  13. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818-823 (2003).
    [CrossRef] [PubMed]
  14. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
    [CrossRef]
  15. D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4, 437-439 (2007).
    [CrossRef]
  16. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999).
    [CrossRef]
  17. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
    [CrossRef] [PubMed]
  18. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  19. T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
    [CrossRef]
  20. A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
    [CrossRef]
  21. P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
    [CrossRef]
  22. M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44, 2652-2658 (2005).
    [CrossRef] [PubMed]
  23. D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
    [CrossRef]
  24. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
    [CrossRef]
  25. J. Ju, W. Jin, and M. S. Demokan, “Design of single-polarization single-mode photonic crystal fiber at 1.30 and 1.55 μm,” J. Lightwave Technol. 24, 825-830 (2006).
    [CrossRef]
  26. D. J. J. Hu, P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, “Holey fiber design for single-polarization single-mode guidance,” Appl. Opt. 48, 4038-4043 (2009).
    [CrossRef] [PubMed]
  27. M. J. steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229-231 (2001).
    [CrossRef]
  28. N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338(2004).
    [CrossRef] [PubMed]
  29. F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, “Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes,” Opt. Lett. 35, 544-546 (2010).
    [CrossRef] [PubMed]
  30. K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  31. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
    [CrossRef]

2010 (1)

2009 (1)

2007 (5)

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
[CrossRef]

J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express 15, 15365-15376(2007).
[CrossRef] [PubMed]

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113-151115 (2007).
[CrossRef]

D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4, 437-439 (2007).
[CrossRef]

2006 (1)

2005 (2)

M. Szpulak, G. Statkiewicz, J. Olszewski, T. Martynkien, W. Urbanczyk, J. Wójcik, M. Makara, J. Klimek, T. Nasilowski, F. Berghmans, and H. Thienpont, “Experimental and theoretical investigations of birefringent holey fibers with a triple defect,” Appl. Opt. 44, 2652-2658 (2005).
[CrossRef] [PubMed]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

2004 (6)

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657-658 (2004).
[CrossRef]

W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299-309 (2004).
[CrossRef] [PubMed]

A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
[CrossRef]

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338(2004).
[CrossRef] [PubMed]

2003 (4)

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818-823 (2003).
[CrossRef] [PubMed]

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

2002 (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

2001 (2)

M. J. steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229-231 (2001).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

2000 (2)

1999 (3)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999).
[CrossRef]

1997 (1)

1996 (1)

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

Andres, M. V.

A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
[CrossRef]

Andrés,

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Arriaga, J.

Atkin, D. M.

Barkou, S. E.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
[CrossRef]

Beltrán-Mejía, F.

Benabid, F.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

Bennett, P. J.

Berghmans, F.

Biancalana, F.

Birks, T.

Birks, T. A.

Bjarklev, A.

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
[CrossRef]

Blondy, J.-M.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Broderick, N. G. R.

Broeng, J.

J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11, 818-823 (2003).
[CrossRef] [PubMed]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
[CrossRef]

Carlsen, A.

Chai, T.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

Chaudhuri, P. R.

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Chen, D.

D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4, 437-439 (2007).
[CrossRef]

D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
[CrossRef]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

Chesini, G.

Cordeiro, C. M.

Cox, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

Cruz, J. L.

A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
[CrossRef]

Delgado-Pinar, M.

A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
[CrossRef]

Demokan, M. S.

Diez, A.

A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
[CrossRef]

Dobb, H.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Dong, X.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113-151115 (2007).
[CrossRef]

Dussardier, B.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Eijkelenborg, M. A. V.

Fellew, M.

Ferrando, A.

Février, S.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Folkenberg, J. R.

George, A. K.

Gérôme, F.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Hansen, T. P.

Hao, J.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

Henry, G.

Hoiby, P. E.

Hu, D. J. J.

Iliew, R.

Issa, N. A.

Jakobsen, C.

Jensen, J. B.

Jensen, J. R.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Jin, W.

Joly, N.

Ju, J.

Kalli, K.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Klimek, J.

Knight, J.

Knight, J. C.

Knudsen, E.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

Large, M. C. J.

Lederer, F.

Leong, E.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

Leproux, P.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Libori, S. E. B.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Limpert, J.

Liu, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

Lu, C.

D. J. J. Hu, P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, “Holey fiber design for single-polarization single-mode guidance,” Appl. Opt. 48, 4038-4043 (2009).
[CrossRef] [PubMed]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Makara, M.

Mangan, B. J.

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327(2000).
[CrossRef]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

Martynkien, T.

Miret, J. J.

Mogilevstev, D.

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
[CrossRef]

Monnom, G.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Monro, T. M.

Nasilowski, T.

Ng, J.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Nolte, S.

Noordegraaf, D.

Olszewski, J.

Ortigosa-Blance, A.

A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
[CrossRef]

Ortigosa-Blanch, A.

Osgood, R. M.

Paulose, V.

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Pedersen, L. H.

Petersson, A.

Ren, G.

Richardson, D. J.

Riishede, J.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

Roy, P.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

Schreiber, T.

Shen, L.

D. Chen and L. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defect,” J. Lightwave Technol. 25, 2700-2705 (2007).
[CrossRef]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

Shum, P.

D. J. J. Hu, P. Shum, C. Lu, X. Yu, G. Wang, and G. Ren, “Holey fiber design for single-polarization single-mode guidance,” Appl. Opt. 48, 4038-4043 (2009).
[CrossRef] [PubMed]

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113-151115 (2007).
[CrossRef]

Silvestre, E.

Simonsen, H.

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

Skryabin, D. V.

Statkiewicz, G.

steel, M. J.

Szpulak, M.

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113-151115 (2007).
[CrossRef]

Tang, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

Thienpont, H.

Tunnermann, T.

Urbanczyk, W.

Viale, P.

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

Vienne, G.

Wadsworth, W.

Wadsworth, W. J.

Wang, G.

Webb, D. J.

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657-658 (2004).
[CrossRef]

Wójcik, J.

Yu, X.

Zellmer, H.

Zhao, C.

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

Zhou, X.

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based on Sagnac interferometer,” Appl. Phys. Lett. 90, 151113-151115 (2007).
[CrossRef]

Electron. Lett. (2)

S. Février, P. Viale, F. Gérôme, P. Leproux, P. Roy, J.-M. Blondy, B. Dussardier, and G. Monnom, “Very large effective area singlemode photonic bandgap fibre,” Electron. Lett. 39, 1240-1242 (2003).
[CrossRef]

H. Dobb, K. Kalli, and D. J. Webb, “Temperature-insensitive long period grating sensors in photonic crystal fibre,” Electron. Lett. 40, 657-658 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

T. P. Hansen, J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, “Highly birefringent index-guiding photonic crystal fibers,” IEEE Photon. Technol. Lett. 13, 588-590 (2001).
[CrossRef]

A. Ortigosa-Blance, A. Diez, M. Delgado-Pinar, J. L. Cruz, and M. V. Andres, “Ultrahigh birefringent nonlinear microstructured fiber,” IEEE Photon. Technol. Lett. 16, 1667-1669(2004).
[CrossRef]

P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Near-elliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004).
[CrossRef]

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384-1386 (2003).
[CrossRef]

X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626-1628 (2005).
[CrossRef]

J. Lightwave Technol. (2)

Laser Phys. Lett. (1)

D. Chen, “Stable multi-wavelength erbium-doped fiber laser based on photonic crystal fiber Sagnac loop filter,” Laser Phys. Lett. 4, 437-439 (2007).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Fiber Technol. (1)

J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, “Photonic crystal fibers: a new class of optical waveguides,” Opt. Fiber Technol. 5, 305-330 (1999).
[CrossRef]

Opt. Lett. (9)

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, “Highly birefringent photonic crystal fibers,” Opt. Lett. 25, 1325-1327(2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, J. J. Miret, and Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
[CrossRef]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395-1397(1999).
[CrossRef]

M. J. steel and R. M. Osgood, “Elliptical-hole photonic crystal fibers,” Opt. Lett. 26, 229-231 (2001).
[CrossRef]

N. A. Issa, M. A. V. Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338(2004).
[CrossRef] [PubMed]

F. Beltrán-Mejía, G. Chesini, E. Silvestre, A. K. George, J. C. Knight, and C. M. Cordeiro, “Ultrahigh-birefringent squeezed lattice photonic crystal fiber with rotated elliptical air holes,” Opt. Lett. 35, 544-546 (2010).
[CrossRef] [PubMed]

Science (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399-402 (2002).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539(1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross sections of (a) a highly birefringent PCF based on a double-hole unit and (b) an elliptical-hole PCF. Dotted circles indicate potential cane units.

Fig. 2
Fig. 2

Effective index of the x-polarized and y- polarized fundamental modes as a function of normalized frequency for the proposed double-hole PCF and the elliptical-hole PCF. Inset: profile of the electric field of the y-polarized fundamental modes at normalized frequency υ = 1 for the proposed double-hole PCF (left) and the elliptical-hole PCF (right).

Fig. 3
Fig. 3

Birefringence property of the proposed double-hole PCF and the elliptical-hole PCF.

Fig. 4
Fig. 4

Confinement loss property of the proposed double-hole PCF and the elliptical-hole PCF.

Fig. 5
Fig. 5

Birefringence property of the proposed double-hole PCF under the random rotation of a double-hole unit. Inset: rotation of the double-hole unit with an angle of α and the cross section of one double-hole PCF under random rotation of the double-hole unit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n eff x n eff y ,

Metrics