Abstract

The effects of excitation wavelength on the optical properties (emission spectrum and quantum yield) of a luminescent solar concentrator (LSC) containing a fluorescent organic dye (Lumogen F Rot 305) are studied. Excitation at wavelengths on the long-wavelength edge of the absorption spectrum of the dye results in redshifted emission, but the quantum yield remains constant at 100%. The origin of this effect and its consequences are discussed. The extent of the long-wavelength tail of the absorption spectrum of the dye is determined and the importance in reabsorption losses is shown. The optical efficiencies and photon transport probabilities of LSCs containing either an organic dye or a rare-earth lanthanide complex are compared using ray-tracing simulations and experiment. The optical efficiency is shown to depend strongly on the Stokes shift of the fluorophore. The lanthanide complex, which has a very large Stokes shift, exhibits a higher optical efficiency than the dye (64% cf. 50%), despite its lower quantum yield (86% cf. 100%).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1. Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090-3110 (1979).
    [CrossRef]
  2. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2. Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733-3754 (1981).
    [CrossRef]
  3. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
    [CrossRef]
  4. A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
    [CrossRef]
  5. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299-2300 (1976).
    [CrossRef]
  6. M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Outdoor evaluation of luminescent solar concentrator prototypes,” Appl. Opt. 24, 2028-2032 (1985).
    [CrossRef]
  7. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
    [CrossRef]
  8. J. M. Drake, M. L. Lesiecki, J. Sansregret, and W. R. L. Thomas, “Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation,” Appl. Opt. 21, 2945-2952 (1982).
    [CrossRef]
  9. P. S. Friedman and C. R. Parent, Luminescent Solar Concentrator Development--Final Subcontract Report, contract DE-AC02-83CH10093 (U.S. Department of Energy, 1984).
  10. S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007).
    [CrossRef]
  11. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Solar Energy 81, 813-821 (2007).
    [CrossRef]
  12. D. J. Farrell, A. J. Chatten, A. Buchtemann, and K. W. J. Barnham, “Fabrication, characterisation and modelling of quantum dot solar concentrator stacks,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 217-200.
  13. V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007).
    [CrossRef]
  14. H. Lu and J. Ballato, “Synthesis and characterization of Er3+-doped sol-gel silica containing vanadium oxide nanotubes,” J. Am. Ceram. Soc. 89, 3573-3576 (2006).
    [CrossRef]
  15. G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
    [CrossRef]
  16. J. Ballato, R. E. Riman, and E. Snitzer, “Sol-gel synthesis of rare-earth-doped lanthanum halides for highly efficient 1.3 μm optical amplification,” Opt. Lett. 22, 691-693 (1997).
    [CrossRef]
  17. R. W. Olson, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20, 2934-2940 (1981).
    [CrossRef]
  18. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
    [CrossRef]
  19. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14, 1312-1322 (2008).
    [CrossRef]
  20. J. Ballato, S. Foulger, and D. W. Smith Jr., “Optical properties of perfluorocyclobutyl polymers,” J. Opt. Soc. Am. B 20, 1838-1843 (2003).
    [CrossRef]
  21. Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003).
    [CrossRef]
  22. J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
    [CrossRef]
  23. P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
    [CrossRef]
  24. O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
    [CrossRef]
  25. S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006).
    [CrossRef]
  26. M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes,” Phys. Chem. Chem. Phys. 4, 1542-1548 (2002).
    [CrossRef]
  27. A. Burgers, L. Sloof, A. Buchtemann, and J. van Roosmalen, “Performance of single layer luminescent concentrators with multiple dyes,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 198-201.
  28. A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, “Modelling of luminescent concentrators by ray-tracing,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 394-397.
  29. M. Carrascosa, S. Unamuno, and F. Agullo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236-3241 (1983).
    [CrossRef]
  30. B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in Proceedings of the 21st European Photovoltaic Solar Energy Conference (WIP, 2006), pp. 185-188.
  31. T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
    [CrossRef]
  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).
  33. BASF Lumogen F Dyes product datasheets, http://www.dispersions-pigments.basf.com/portal/basf/ien/dt.jsp?setCursor=1_422514 (last accessed 05/01/10).
  34. R. Iden and G. Seybold, “Perylene compounds,” U.S. patent 4,618,694 (21 Oct. 1986).
  35. G. B. Smith and J. B. Franklin, “Sunlight collecting and transmitting system,” U.S. patent 5,548,490 (20 Aug. 1996).
  36. M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
    [CrossRef]
  37. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethylmethacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212-220 (2009).
    [CrossRef]
  38. R. Vieweg and F. Esser, “Polymethacrylate,” in Kunsstoff-Handbuch, R. Vieweg and F. Esser, ed. (Carl Hanser Verlag, 1975), Vol. IX, pp. 15-23.
  39. J. Sansregret, J. M. Drake, W. R. L. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22, 573-577 (1983).
    [CrossRef]
  40. A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
    [CrossRef]
  41. M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
    [CrossRef]
  42. P. S. Friedman, “Luminescent solar concentrators,” Opt. Eng. 20, 887-892 (1981).
  43. F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001).
    [CrossRef]
  44. F. Wurthner, “Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures,” Chem. Commun. 1564-1579 (2004).
    [CrossRef]
  45. L. R. Wilson and B. S. Richards, “High-efficiency dyes for luminescent solar concentrators--photostability, modelling and results,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2008), pp. 510-512.
  46. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
    [CrossRef]
  47. J. Ballato, S. Foulger, and D. W. Smith Jr., “Optical properties of perfluorocyclobutyl polymers. II. Theoretical and experimental attenuation,” J. Opt. Soc. Am. B 21, 958-967 (2004).
    [CrossRef]

2009

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
[CrossRef]

L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethylmethacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212-220 (2009).
[CrossRef]

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

2008

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14, 1312-1322 (2008).
[CrossRef]

2007

S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007).
[CrossRef]

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Solar Energy 81, 813-821 (2007).
[CrossRef]

V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007).
[CrossRef]

2006

H. Lu and J. Ballato, “Synthesis and characterization of Er3+-doped sol-gel silica containing vanadium oxide nanotubes,” J. Am. Ceram. Soc. 89, 3573-3576 (2006).
[CrossRef]

S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006).
[CrossRef]

2005

G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
[CrossRef]

2004

J. Ballato, S. Foulger, and D. W. Smith Jr., “Optical properties of perfluorocyclobutyl polymers. II. Theoretical and experimental attenuation,” J. Opt. Soc. Am. B 21, 958-967 (2004).
[CrossRef]

F. Wurthner, “Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures,” Chem. Commun. 1564-1579 (2004).
[CrossRef]

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

2003

J. Ballato, S. Foulger, and D. W. Smith Jr., “Optical properties of perfluorocyclobutyl polymers,” J. Opt. Soc. Am. B 20, 1838-1843 (2003).
[CrossRef]

Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003).
[CrossRef]

2002

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes,” Phys. Chem. Chem. Phys. 4, 1542-1548 (2002).
[CrossRef]

2001

F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001).
[CrossRef]

1997

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

J. Ballato, R. E. Riman, and E. Snitzer, “Sol-gel synthesis of rare-earth-doped lanthanum halides for highly efficient 1.3 μm optical amplification,” Opt. Lett. 22, 691-693 (1997).
[CrossRef]

1989

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

1985

1983

1982

1981

1979

1978

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
[CrossRef]

1977

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

1976

Agullo-Lopez, F.

Alamiry, M.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

Alves, L. P.

V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007).
[CrossRef]

Ballato, J.

Barnham, K. W. J.

D. J. Farrell, A. J. Chatten, A. Buchtemann, and K. W. J. Barnham, “Fabrication, characterisation and modelling of quantum dot solar concentrator stacks,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 217-200.

Bastiaansen, C. W. M.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Batchelder, J. S.

Bende, E. E.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

Biju, S.

S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006).
[CrossRef]

Bosch, A.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Broer, D. J.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

Buchtemann, A.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

A. Burgers, L. Sloof, A. Buchtemann, and J. van Roosmalen, “Performance of single layer luminescent concentrators with multiple dyes,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 198-201.

D. J. Farrell, A. J. Chatten, A. Buchtemann, and K. W. J. Barnham, “Fabrication, characterisation and modelling of quantum dot solar concentrator stacks,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 217-200.

Budel, T.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

Burgers, A.

A. Burgers, L. Sloof, A. Buchtemann, and J. van Roosmalen, “Performance of single layer luminescent concentrators with multiple dyes,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 198-201.

Burgers, A. R.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, “Modelling of luminescent concentrators by ray-tracing,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 394-397.

Carrascosa, M.

Chatten, A. J.

D. J. Farrell, A. J. Chatten, A. Buchtemann, and K. W. J. Barnham, “Fabrication, characterisation and modelling of quantum dot solar concentrator stacks,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 217-200.

Chen, C. W.

G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
[CrossRef]

Chen, S.

G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
[CrossRef]

Cole, T.

Cusso, F.

Debije, M. G.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef]

Dimroth, F.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Doran, J.

S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007).
[CrossRef]

Drake, J. M.

Dunlop, E. D.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

Eames, P. C.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Solar Energy 81, 813-821 (2007).
[CrossRef]

Earp, A. A.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Esser, F.

R. Vieweg and F. Esser, “Polymethacrylate,” in Kunsstoff-Handbuch, R. Vieweg and F. Esser, ed. (Carl Hanser Verlag, 1975), Vol. IX, pp. 15-23.

Farrell, D. J.

D. J. Farrell, A. J. Chatten, A. Buchtemann, and K. W. J. Barnham, “Fabrication, characterisation and modelling of quantum dot solar concentrator stacks,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 217-200.

Fayer, M. D.

Foulger, S.

Franklin, J.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Franklin, J. B.

G. B. Smith and J. B. Franklin, “Sunlight collecting and transmitting system,” U.S. patent 5,548,490 (20 Aug. 1996).

Freniere, E. R.

T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
[CrossRef]

Friedman, P. S.

P. S. Friedman, “Luminescent solar concentrators,” Opt. Eng. 20, 887-892 (1981).

P. S. Friedman and C. R. Parent, Luminescent Solar Concentrator Development--Final Subcontract Report, contract DE-AC02-83CH10093 (U.S. Department of Energy, 1984).

Gallagher, S. J.

S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007).
[CrossRef]

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Solar Energy 81, 813-821 (2007).
[CrossRef]

Glunz, S. W.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Goetzberger, A.

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
[CrossRef]

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

Goldschmidt, J. C.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Greubel, W.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

Hasegawa, Y.

Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003).
[CrossRef]

Helmers, H.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Hermans, K.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

Hlavaty, J.

T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
[CrossRef]

Hoeks, T. L.

Iden, R.

R. Iden and G. Seybold, “Perylene compounds,” U.S. patent 4,618,694 (21 Oct. 1986).

Jaque, F.

Jones, A. C.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

Jukes, R. T. F.

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes,” Phys. Chem. Chem. Phys. 4, 1542-1548 (2002).
[CrossRef]

Kaiser, A.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

Kankare, J.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

Kariuki, B. M.

S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006).
[CrossRef]

Kastelijn, M. J.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Kenny, R. P.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

Kinderman, R.

A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, “Modelling of luminescent concentrators by ray-tracing,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 394-397.

Kumar, G. A.

G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

Lambe, J.

Latva, M.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

Lesiecki, M. L.

Loring, R. F.

Lu, H.

H. Lu and J. Ballato, “Synthesis and characterization of Er3+-doped sol-gel silica containing vanadium oxide nanotubes,” J. Am. Ceram. Soc. 89, 3573-3576 (2006).
[CrossRef]

Markvart, T.

T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
[CrossRef]

Matachescu, C.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

McIntosh, K. R.

B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in Proceedings of the 21st European Photovoltaic Solar Energy Conference (WIP, 2006), pp. 185-188.

Meseguer, F.

Meyer, T. J. J.

T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
[CrossRef]

Moudam, O.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

Mukkala, V.-M.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

Munin, E.

V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007).
[CrossRef]

Norton, B.

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Solar Energy 81, 813-821 (2007).
[CrossRef]

S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007).
[CrossRef]

Olson, R. W.

Pacheco, T. T.

V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007).
[CrossRef]

Parent, C. R.

P. S. Friedman and C. R. Parent, Luminescent Solar Concentrator Development--Final Subcontract Report, contract DE-AC02-83CH10093 (U.S. Department of Energy, 1984).

Peters, M.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Pilla, V.

V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007).
[CrossRef]

Pravettoni, M.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

Raj, D. B. A.

S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006).
[CrossRef]

Reddy, M. L. P.

S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006).
[CrossRef]

Richards, B. S.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethylmethacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212-220 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14, 1312-1322 (2008).
[CrossRef]

B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in Proceedings of the 21st European Photovoltaic Solar Energy Conference (WIP, 2006), pp. 185-188.

L. R. Wilson and B. S. Richards, “High-efficiency dyes for luminescent solar concentrators--photostability, modelling and results,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2008), pp. 510-512.

Richardson, P.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

Riman, R.

G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
[CrossRef]

Riman, R. E.

Robertson, N.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

Rodriguez-Ubis, J. C.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

Rowan, B. C.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14, 1312-1322 (2008).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef]

S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007).
[CrossRef]

Sansregret, J.

Seybold, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

R. Iden and G. Seybold, “Perylene compounds,” U.S. patent 4,618,694 (21 Oct. 1986).

Sidrach de Cardona, M.

Siegmar, D.

F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001).
[CrossRef]

Sloof, L.

A. Burgers, L. Sloof, A. Buchtemann, and J. van Roosmalen, “Performance of single layer luminescent concentrators with multiple dyes,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 198-201.

Slooff, L. H.

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, “Modelling of luminescent concentrators by ray-tracing,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 394-397.

Smith, D.

G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
[CrossRef]

Smith, D. W.

Smith, G. B.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

G. B. Smith and J. B. Franklin, “Sunlight collecting and transmitting system,” U.S. patent 5,548,490 (20 Aug. 1996).

Smith, L.

T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
[CrossRef]

Smith, Jr., D. W.

Snitzer, E.

Sogabe, K.

Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003).
[CrossRef]

Swift, P. D.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Takalo, H.

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

Teunissen, J.-P.

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Thalacker, C.

F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001).
[CrossRef]

Thomas, W. R. L.

Tschierske, C.

F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001).
[CrossRef]

Unamuno, S.

van Roosmalen, J.

A. Burgers, L. Sloof, A. Buchtemann, and J. van Roosmalen, “Performance of single layer luminescent concentrators with multiple dyes,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 198-201.

van Roosmalen, J. A. M.

A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, “Modelling of luminescent concentrators by ray-tracing,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 394-397.

Verbunt, P. P. C.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef]

Verhoeven, J. W.

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes,” Phys. Chem. Chem. Phys. 4, 1542-1548 (2002).
[CrossRef]

Vieweg, R.

R. Vieweg and F. Esser, “Polymethacrylate,” in Kunsstoff-Handbuch, R. Vieweg and F. Esser, ed. (Carl Hanser Verlag, 1975), Vol. IX, pp. 15-23.

Wada, Y.

Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003).
[CrossRef]

Wagenblast, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

Weber, W. H.

Werts, M. H. V.

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes,” Phys. Chem. Chem. Phys. 4, 1542-1548 (2002).
[CrossRef]

Willeke, G.

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

Wilson, L. R.

L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethylmethacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212-220 (2009).
[CrossRef]

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14, 1312-1322 (2008).
[CrossRef]

L. R. Wilson and B. S. Richards, “High-efficiency dyes for luminescent solar concentrators--photostability, modelling and results,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2008), pp. 510-512.

Wurthner, F.

F. Wurthner, “Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures,” Chem. Commun. 1564-1579 (2004).
[CrossRef]

F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001).
[CrossRef]

Yanagida, S.

Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003).
[CrossRef]

Zewail, A. H.

Adv. Funct. Mater.

P. P. C. Verbunt, A. Kaiser, K. Hermans, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “Controlling light emission in luminescent solar concentrators through the use of dye molecules planarly aligned by liquid crystals,” Adv. Funct. Mater. 19, 2714-2719 (2009).
[CrossRef]

Appl. Opt.

M. Carrascosa, S. Unamuno, and F. Agullo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt. 22, 3236-3241 (1983).
[CrossRef]

L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethylmethacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212-220 (2009).
[CrossRef]

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1. Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090-3110 (1979).
[CrossRef]

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2. Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733-3754 (1981).
[CrossRef]

W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299-2300 (1976).
[CrossRef]

M. Sidrach de Cardona, M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque, “Outdoor evaluation of luminescent solar concentrator prototypes,” Appl. Opt. 24, 2028-2032 (1985).
[CrossRef]

J. M. Drake, M. L. Lesiecki, J. Sansregret, and W. R. L. Thomas, “Organic dyes in PMMA in a planar luminescent solar collector: a performance evaluation,” Appl. Opt. 21, 2945-2952 (1982).
[CrossRef]

R. W. Olson, R. F. Loring, and M. D. Fayer, “Luminescent solar concentrators and the reabsorption problem,” Appl. Opt. 20, 2934-2940 (1981).
[CrossRef]

M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt. 47, 6763-6768(2008).
[CrossRef]

J. Sansregret, J. M. Drake, W. R. L. Thomas, and M. L. Lesiecki, “Light transport in planar luminescent solar concentrators: the role of DCM self-absorption,” Appl. Opt. 22, 573-577 (1983).
[CrossRef]

Appl. Phys.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
[CrossRef]

Appl. Phys. Lett.

G. A. Kumar, C. W. Chen, R. Riman, S. Chen, D. Smith, and J. Ballato, “Optical properties of a transparent CaF2:Er3+ fluoropolymer nanocomposite,” Appl. Phys. Lett. 86, 241105 (2005).
[CrossRef]

Chem. Commun.

O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. 6649-6651(2009).
[CrossRef]

F. Wurthner, “Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures,” Chem. Commun. 1564-1579 (2004).
[CrossRef]

Chem. Eur. J.

F. Wurthner, C. Thalacker, D. Siegmar, and C. Tschierske, “Fluorescent J-type aggregates and columnar mesophases of perylene bisimide dyes,” Chem. Eur. J. 7, 2245-2253(2001).
[CrossRef]

Dyes Pigments

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14, 1312-1322 (2008).
[CrossRef]

Inorg. Chem.

S. Biju, D. B. A. Raj, M. L. P. Reddy, and B. M. Kariuki, “Synthesis, crystal structure, and luminescent properties of novel Eu3+ heterocyclic beta-diketonate complexes with bidentate nitrogen donors,” Inorg. Chem. 45, 10651-10660 (2006).
[CrossRef]

J. Am. Ceram. Soc.

H. Lu and J. Ballato, “Synthesis and characterization of Er3+-doped sol-gel silica containing vanadium oxide nanotubes,” J. Am. Ceram. Soc. 89, 3573-3576 (2006).
[CrossRef]

J. Lumin.

Y. Hasegawa, K. Sogabe, Y. Wada, and S. Yanagida, “Low-vibrational luminescent polymers including tris (bis-perfluoromethane and ethanesulfonylaminate) neodymium(III) with 8 coordinated DMSO-d6,” J. Lumin. 101, 235-224 (2003).
[CrossRef]

M. Latva, H. Takalo, V.-M. Mukkala, C. Matachescu, J. C. Rodriguez-Ubis, and J. Kankare, “Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield,” J. Lumin. 75, 149-169(1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

V. Pilla, L. P. Alves, E. Munin, and T. T. Pacheco, “Radiative quantum efficiency of CdSe/ZnS quantum dots suspended in different solids,” Opt. Commun. 280, 225-229 (2007).
[CrossRef]

Opt. Eng.

P. S. Friedman, “Luminescent solar concentrators,” Opt. Eng. 20, 887-892 (1981).

Opt. Lett.

Phys. Chem. Chem. Phys.

M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven, “The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes,” Phys. Chem. Chem. Phys. 4, 1542-1548 (2002).
[CrossRef]

Phys. Status Solidi (RRL)

L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Buchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status Solidi (RRL) 2, 257-259 (2008).
[CrossRef]

Proc. SPIE

T. J. J. Meyer, J. Hlavaty, L. Smith, E. R. Freniere, and T. Markvart, “Ray tracing techniques applied to modelling of fluorescent solar collectors,” Proc. SPIE 7211, 72110N(2009).
[CrossRef]

Sol. Energy Mater. Sol. Cells

J. C. Goldschmidt, M. Peters, A. Bosch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells 93, 176-182 (2009).
[CrossRef]

M. G. Debije, J.-P. Teunissen, M. J. Kastelijn, P. P. C. Verbunt, and C. W. M. Bastiaansen, “The effect of a scattering layer on the edge output of a luminescent solar concentrator,” Sol. Energy Mater. Sol. Cells 93, 1345-1350 (2009).
[CrossRef]

Solar Energy

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximising the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

S. J. Gallagher, B. C. Rowan, J. Doran, and B. Norton, “Quantum dot solar concentrator: Device optimisation using spectroscopic techniques,” Solar Energy 81, 540-547 (2007).
[CrossRef]

S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Solar Energy 81, 813-821 (2007).
[CrossRef]

Other

D. J. Farrell, A. J. Chatten, A. Buchtemann, and K. W. J. Barnham, “Fabrication, characterisation and modelling of quantum dot solar concentrator stacks,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 217-200.

P. S. Friedman and C. R. Parent, Luminescent Solar Concentrator Development--Final Subcontract Report, contract DE-AC02-83CH10093 (U.S. Department of Energy, 1984).

A. Burgers, L. Sloof, A. Buchtemann, and J. van Roosmalen, “Performance of single layer luminescent concentrators with multiple dyes,” in IEEE 4th World Conference on Photovoltaic Energy Conversion (IEEE, 2006), pp. 198-201.

A. R. Burgers, L. H. Slooff, R. Kinderman, and J. A. M. van Roosmalen, “Modelling of luminescent concentrators by ray-tracing,” in Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2005), pp. 394-397.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

BASF Lumogen F Dyes product datasheets, http://www.dispersions-pigments.basf.com/portal/basf/ien/dt.jsp?setCursor=1_422514 (last accessed 05/01/10).

R. Iden and G. Seybold, “Perylene compounds,” U.S. patent 4,618,694 (21 Oct. 1986).

G. B. Smith and J. B. Franklin, “Sunlight collecting and transmitting system,” U.S. patent 5,548,490 (20 Aug. 1996).

R. Vieweg and F. Esser, “Polymethacrylate,” in Kunsstoff-Handbuch, R. Vieweg and F. Esser, ed. (Carl Hanser Verlag, 1975), Vol. IX, pp. 15-23.

B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in Proceedings of the 21st European Photovoltaic Solar Energy Conference (WIP, 2006), pp. 185-188.

L. R. Wilson and B. S. Richards, “High-efficiency dyes for luminescent solar concentrators--photostability, modelling and results,” in Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition (WIP, 2008), pp. 510-512.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Structure and energy-level diagrams of (a) EuhD [24] and (b) R305 [7]. The absorption and emission processes for each fluorophore are indicated.

Fig. 2
Fig. 2

Absorption and emission spectra of R305 and EuhD. Emission spectra are normalized to the respective peak absorption. Excitation wavelengths for EuhD and R305 are 320 and 530 nm , respectively.

Fig. 3
Fig. 3

Measurement of edge emission spectra from a strip of LSC sheet. Dimensions in centimeters.

Fig. 4
Fig. 4

Measurement of the percentage of photons trapped in a LSC sheet under uniform illumination. The lamp shown was used for measurements on R305 sheets and was replaced with a xenon lamp for EuhD sheets.

Fig. 5
Fig. 5

Emission spectrum of R305 in PMMA (measured from a 5 ppm sample) as excitation wavelength is varied from (a) 310 to 490 nm and (b) 510 to 620 nm .

Fig. 6
Fig. 6

PLQY of R305 (measured from a 98 ppm sample) versus excitation wavelength.

Fig. 7
Fig. 7

Example of scaling procedure. Shown are the molecular emission spectrum, E ( λ ) , the raw spectrum measured from the strip, E raw ( λ ) , the ratio E raw ( λ ) / E ( λ ) , and the scaled emission spectrum, E ( λ ) , obtained by dividing E raw ( λ ) by the constant ratio at long wavelengths (0.34).

Fig. 8
Fig. 8

P 0 versus effective optical density, showing experimental data (points) and calculated curve (curve).

Fig. 9
Fig. 9

Scaling of the tail absorption spectrum (measured from the end emission of strip samples) to match the main absorption spectrum (from the UV/vis spectrophotometer) in the range of 630 650 nm .

Fig. 10
Fig. 10

R305 absorption spectrum in PMMA showing both main and tail absorption regions. A magnified view of the tail absorption is shown in the inset.

Fig. 11
Fig. 11

Simulated η OPT for a 30 cm × 30 cm sheet containing hypothetical dyes with different Stokes shifts, showing the effects of tail absorption, host absorption, and PLQY. Graphs shown are for dye PLQY of 100% with no tail or host absorption (solid curve), dye PLQY of 100% with tail absorption included but no host absorption (dashed curve), dye PLQY of 100% with both tail and host absorption included (dotted curve), dye PLQY of 86% with both tail and host absorption included (dashed-dotted curve). The horizontal line indicates the value of η OPT for the EuhD complex. The vertical line at 23 nm denotes the Stokes shift of the real R305 dye.

Fig. 12
Fig. 12

Simulated (curves) and measured (black circles) η OPT for a 10 cm × 10 cm sheet. For description of each curve, see caption of Fig. 11.

Tables (1)

Tables Icon

Table 1 Sample Concentrations Used in Measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P TIR = n 2 1 n ,
P 0 = E ( λ ) d λ E ( λ ) d λ ,
OD eff = ε peak × c × d × log ( 2.71828 ) ,
ε eff = 1 c d ln { E ( λ ) E ( λ ) } ,

Metrics